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Systematic Study of d-Wave Superconductivity in the 2D Repulsive Hubbard Model
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The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard model,
commonly believed to describe high-temperature superconductors, is systematically studied using the
dynamical cluster approximation and quantum Monte Carlo simulations as a cluster solver. Because of the
nonlocality of the d-wave superconducting order parameter, the results on small clusters show large size
and geometry effects. In large enough clusters, the results are independent of the cluster size and display a
finite temperature instability to d-wave superconductivity.
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Despite years of active research, the understanding of
pairing in the high-temperature ‘‘cuprate’’ superconductors
(HTSC) remains one of the most important outstanding
problems in condensed matter physics. While conventional
superconductors are well described by the BCS theory, the
pairing mechanism in HTSC is believed to be of entirely
different nature. Strong electronic correlations play a cru-
cial role in HTSC, not only for superconductivity but also
for their unusual normal state behavior. Hence, models
describing itinerant correlated electrons, in particular, the
two-dimensional (2D) Hubbard model and its strong-
coupling limit, the 2D t-J model, were proposed to capture
the essential physics of the CuO planes in HTSC [1,2].
Despite the fact that these models are among the mostly
studied models in condensed matter physics, the question
of whether they contain enough ingredients to describe
HTSC remains an unsolved problem.

Many different techniques, from analytic to numerical,
have been applied to study superconductivity in these
models. The Mermin-Wagner theorem [3] and the rigorous
results in Ref. [4] preclude dx2�y2 superconducting long-
range order at finite temperatures in the 2D models.
Superconductivity may, however, exist—as in the attrac-
tive Hubbard model—as topological order at finite tem-
peratures below the Kosterlitz-Thouless (KT) transition
temperature [5]. Recent renormalization group studies in-
dicate that the ground state of the doped weak-coupling 2D
Hubbard model is superconducting with a dx2�y2 -wave
order parameter [6]. The possibility of dx2�y2 -wave pairing
in the 2D Hubbard and t-J models was also indicated in a
number of numerical studies of finite system size [for a
review, see [7] ]. Only recent numerical calculations for the
t-J model provided evidence for pairing at T � 0 in rela-
tively large systems for physically relevant values of J=t
[8]. Quantum Monte Carlo (QMC) simulations are also
employed to search for such a transition [9]. These studies
indicate an enhancement of the pairing correlations in the
dx2�y2 channel with decreasing temperature. Unfortunately
the Fermion sign problem limits these studies to tempera-
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tures too high to study a possible KT transition. Another
difficulty of these methods arises from their strong finite-
size effects, often ruling out the reliable extraction of low-
energy scales. In fact, a reliable finite-size scaling has only
recently been achieved in the negative-U model [10],
where the relevant temperature scales are much higher.
The available results for the positive-U model so far
have thus been inconclusive, and a treatment within a
nonperturbative scheme that goes beyond the conventional
finite-size techniques is clearly necessary to resolve the
controversy as to whether there exists finite temperature
superconductivity in these models.

In this Letter we use the dynamical cluster approxima-
tion (DCA) [11] [for a review, see [12] ] to explore the
superconducting instability in the 2D Hubbard model
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where c�y�i� (creates) destroys an electron with spin� on site
i, ni� is the corresponding number operator, t the hopping
amplitude between nearest neighbors h. . .i, and U the on-
site Coulomb repulsion. In the DCA we take advantage of
the short length scale of spin correlations in optimally
doped HTSC [13] to map the original lattice model onto
a periodic cluster of size Nc � Lc � Lc embedded in a
self-consistent host. Thus, correlations up to a range � &

Lc are treated accurately, while the physics on longer
length scales is described at the mean-field level. By
increasing the cluster size, it thus allows us to systemati-
cally interpolate between the single-site dynamical mean-
field result and the exact result while remaining in the
thermodynamic limit. We solve the cluster problem using
QMC simulations [14].

We present results of large cluster calculations—up to
26 sites—that indicate that the 2D Hubbard model has a
superconducting instability at a finite temperature. This
conclusion is reached due to several factors: simulations
on small clusters, where d-wave order is topologically
allowed, show large finite-size and geometry effects lead-
1-1 © 2005 The American Physical Society
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FIG. 1 (color). Cluster sizes and geometries used in our study.
The shaded squares represent independent d-wave plaquettes
within the clusters. In small clusters, the number of neighboring
d-wave plaquettes zd listed in Table I is smaller than 4, i.e., than
that of the infinite lattice.
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ing to inconclusive results. However, since the average sign
in DCA-QMC simulations is significantly larger than in
finite-size QMC counterparts, exploring lower tempera-
tures and larger clusters becomes possible. In addition,
the advent of new parallel vector machines, such as the
Cray X1 at ORNL, improves the speed of these calcula-
tions by more than 1 order of magnitude compared to
conventional architectures, making simulations on large
clusters with a small average sign feasible. Within the
limits of current computational capability, we observe
finite transition temperatures in the largest affordable clus-
ters. There the results are independent of cluster size within
the error bars, although we cannot preclude a further small
reduction in transition temperatures in yet larger clusters.

Previous DCA simulations with a cluster of four sites,
the smallest cluster that can capture dx2�y2 -wave pair-
ing, with U equal to the bandwidth W � 8t, show good
general agreement with HTSC [15]. In the paramagnetic
state, the low-energy spin excitations become suppressed
below the crossover temperature T�, and a pseudogap
opens in the density of states at the chemical potential.
At lower temperatures, we find a finite temperature tran-
sition to antiferromagnetic long-range order at low doping,
while at larger doping, the system displays an instability to
dx2�y2 -wave superconducting long-range order. This ap-
parent violation of the Mermin-Wagner theorem is a con-
sequence of the small cluster size studied [see also [16] ].
More recent results obtained with a similar quantum clus-
ter algorithm confirm the presence of antiferromagne-
tism and superconductivity in the ground state of the 2D
Hubbard model [17].

With increasing cluster size, however, the DCA progres-
sively includes longer-ranged fluctuations while retaining
some mean-field character. Larger clusters are thus ex-
pected to systematically drive the Néel temperature to
zero and hence recover the Mermin-Wagner theorem in
the infinite cluster size limit. In contrast, superconductivity
may persist as KT order even for large cluster sizes.

Since the large cluster simulations presented here are at
the limit of current computational capabilities, we are
restricted in our ability to explore both the parameter space
and different cluster sizes. We choose the parameters to
favor superconducting and antiferromagnetic order. In our
study of superconductivity, we choose U � 4t � W=2 (we
take t as our unit of energy). While we observe that larger
values of U yield higher transition temperatures in the
4-site cluster, the smaller value of U greatly reduces the
sign problem and thus allows us to simulate larger cluster
sizes. We focus on a doping of 10%, where the pairing
correlations are maximal for U � W=2. To study antifer-
romagnetism, we focus on the undoped model and setU �
8t, where the Néel temperature is highest.

Furthermore, we have to be careful in selecting different
cluster sizes and geometries. Much can be learned from
simulations of finite-size systems, where periodic bound-
ary conditions are typically used. Betts and Flynn [18] sys-
tematically studied the 2D Heisenberg model on finite-size
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clusters and developed a grading scheme to determine
which clusters should be used. The main qualification is
the ‘‘imperfection’’ of the near-neighbor shells: a measure
of the (in)completeness of each neighbor shell compared to
the infinite lattice. In finite-size scaling calculations they
found that the results for the most perfect clusters fall on a
scaling curve, while the imperfect clusters generally pro-
duce results off the curve. Here, we employ some of the
cluster geometries proposed by Betts (see Fig. 1) to study
the antiferromagnetic transition at half filling and general-
ize Betts’ arguments to generate a set of clusters appro-
priate to study d-wave superconductivity.

To illustrate that the DCA recovers the correct result as
the cluster size increases, we plot in Fig. 2 the DCA results
for the Néel temperature TN at half filling as a function of
the cluster size Nc. TN decreases slowly with increasing
cluster size Nc. As spin correlations develop exponentially
with decreasing temperature in 2D, the Nc > 4 data fall
logarithmically with Nc, consistent with TN � 0 in the
infinite size cluster limit. Thus, the Mermin-Wagner theo-
rem is recovered for Nc ! 1. The clusters with Nc � 2
and Nc � 4 are special because their coordination number
is reduced from four. For Nc � 2 the coordination number
is one and hence a local singlet is formed on the cluster for
temperatures below J� t2=U. In the Nc � 4 site cluster,
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FIG. 2 (color online). Néel temperature at half filling when
U � 8t vs the cluster size. TN scales to zero in the infinite cluster
size limit. The solid line represents a fit to the function A=	B�
ln�Nc=2�
 obtained from the scaling ansatz ��TN� � Lc. For
Nc � 2 a local singlet and for Nc � 4 the RVB state suppresses
antiferromagnetism.

TABLE I. Number of independent neighboring d-wave pla-
quettes zd and the values of TKT

c and Tlin
c obtained from the

Kosterlitz-Thouless and linear fits of the pair-field susceptibility
in Fig. 3, respectively.

Cluster zd TKT
c =t Tlin

c =t

4 0 (MF) 0.046 0.056
8A 1 �0:014 �0:006

18A 1 �0:043 �0:022
12A 2 0.011 0.016
16B 2 0.010 0.015
16A 3 0:021� 0:008 0:025� 0:002
20A 4 0.019 0.022
24A 4 0.016 0.020
26A 4 0.020 0.023
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the coordination is two, so fluctuations of the order pa-
rameter are overestimated and the resonating valence bond
(RVB) state [1] is stabilized. Hence, antiferromagnetism is
suppressed in these cluster sizes and their corresponding
TN does not fall on the curve.

We now turn to the main focus of this Letter, i.e., the
search for a possible KT instability to the superconducting
state. To check that the DCA formalism is able to describe
such a transition, we first tested the DCA-QMC code on the
negative U, i.e., attractive Hubbard model which is known
to exhibit a KT instability to an s-wave superconducting
state [10]. We find that the DCA indeed produces a finite
temperature s-wave instability to the KT superconducting
state. Because of the local nature of the s-wave order
parameter, the DCA results converge rather quickly with
cluster size. The DCA values for Tc agree with those
recently obtained in finite-size QMC simulations [10]. In
addition, we checked that our DCA-QMC code reproduces
the results of other DMFT codes when Nc � 1, and those
of finite-size QMC codes when the coupling to the self-
consistent host is turned off.

To identify a possible KT transition in the positive U
Hubbard model we calculate the dx2�y2 -wave pair-field
susceptibility Pd for the clusters Nc � 4A, 8A, 16A,
16B, 18A, 20A, 24A, and 26A. In contrast to the s-wave
order parameter in the attractive model, the d-wave order
parameter is nonlocal and involves four bonds or sites.
Thus, large size and geometry effects have to be expected
in small clusters. Similar to the cluster grading scheme
Betts developed for magnetic order, we can classify the
different clusters according to their quality for d-wave
order. At low temperatures, local d-wave pairs will form,
but phase fluctuations of the pair wave function prevent the
system from becoming superconducting. Since the DCA
cluster has periodic boundary conditions, each four-site
23700
d-wave plaquette has four neighboring d-wave plaquettes.
However, as illustrated in Fig. 1, in small clusters, these are
not necessarily independent and the effective dimension-
ality may be reduced.

Figure 1 shows the arrangement of independent d-wave
plaquettes in the clusters used in our study and their
corresponding number zd is listed in Table I. In the infinite
system, zd � 4. The Nc � 4 cluster encloses exactly one
d-wave plaquette (zd � 0). When a local d-wave pair
forms on the cluster, the system becomes superconducting,
since no superconducting phase fluctuations are included.
Thus, the Nc � 4 result corresponds to the mean-field
solution. In the 8A cluster, there is room for one more
d-wave pair, thus the number of independent neighboring
d-wave plaquettes zd � 1. Since this same neighboring
plaquette is adjacent to its partner on four sides, phase
fluctuations are replicated and hence overestimated as
compared to the infinite system. The situation is similar
in the 16B cluster, where only two independent (and one
next-nearest neighbor) d-wave plaquettes are found (zd �
2). In contrast, zd � 3 in the oblique 16A cluster. We thus
expect d-wave pairing correlations to be suppressed in the
16B cluster as compared to those in the 16A cluster. With
the exception of the 18A cluster, where neighboring
d-wave plaquettes share one site and thus are not indepen-
dent, the larger clusters 20A, 24A, and 26A all have zd � 4
and are thus expected to show the most accurate results.
Hence, as the number of independent neighboring d-wave
plaquettes, zd, is reduced from four, phase fluctuations are
replicated due to periodic boundary conditions and thus
overemphasized, suppressing pairing correlations and con-
sequently Tc. Note that the effects of finite-size energy
levels on the pairing correlations were pointed out in QMC
simulations of Hubbard ladders [19].

Figure 3 shows the temperature dependence of the in-
verse d-wave pair-field susceptibility, 1=Pd, in the 10%
doped system. Since a proper error propagation is severely
hampered by storage requirements, we obtain the error bars
shown on the 16A results from a number of independent
runs initialized with different random number seeds. Error
1-3
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FIG. 3 (color). Inverse d-wave pair-field susceptibility as a
function of temperature for different cluster sizes at 10% doping.
The continuous lines represent fits to the function Pd �
A exp	2B=�T � Tc�0:5
 for data with different values of zd.
Inset: magnified view of the low-temperature region.
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bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc � 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd � 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd � 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd � A exp	2B=�T � Tc�

0:5
, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd � 3 we find a
transition temperature Tc 
 0:023t� 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc�Nc� � Tc�1� � B

2=	C� ln�Nc�=2
2 where Tc�1� is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.
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In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc � 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc � 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc 
 0:023t at 10% doping when
U � 4t.
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