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Curie Law, Entropy Excess, and Superconductivity in Heavy Fermion Metals
and Other Strongly Interacting Fermi Liquids
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Low-temperature thermodynamic properties of strongly interacting Fermi liquids with a fermion
condensate are investigated. We demonstrate that the spin susceptibility of these systems exhibits the
Curie-Weiss law, and the entropy contains a temperature-independent term. The excessive entropy is
released at the superconducting transition, enhancing the specific heat jump �C and rendering it
proportional to the effective Curie constant. The theoretical results are favorably compared with the
experimental data on the heavy-fermion metal CeCoIn5, as well as 3He films.
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Theoretical understanding of strongly interacting Fermi
systems, such as heavy-fermion metals, is challenging [1].
Conventionally, electrons in solids are classified as either
itinerant or localized. The former have a Fermi surface, and
their spin susceptibility � at low temperature T follows the
Pauli law ��T� � const, whereas the latter exhibit the
Curie law � / 1=T. The Curie law is observed in many
heavy-fermion metals [2–5] and is commonly attributed to
the localized character of the f electrons. However, in
some of these materials, such as CeCoIn5 [4] and
PuCoGa5 [5,6], the low-temperature Curie law is immedi-
ately followed by a superconducting transition, also asso-
ciated with the f electrons [7]. If the f electrons are
localized, how can they superconduct? Actually, measure-
ments of the Fermi surfaces of the heavy-fermion metals
by magnetic oscillations directly demonstrate that the f
electrons are itinerant, in agreement with band-structure
calculations [8]. However, if the f electrons are itinerant,
how can they exhibit the low-temperature Curie law?

We show that these puzzles can be resolved within the
Fermi-liquid theory if itinerant electrons form the so-called
‘‘fermion-condensate’’ state [9,10]. The interplay between
bandlike and atomiclike behavior of electrons in solids is
often treated on the basis of the Hubbard model and the
dynamical mean-field theory [11]. Heavy fermions are
typically described by the Anderson-Kondo lattice models
of coupled itinerant and localized electrons originating
from different orbitals, sometimes using the two-fluid de-
scription [12]. However, given the experimental evidence
that the f electrons are itinerant in some heavy-fermions
metals, here we study a conceptually simpler model where
all electrons are itinerant. Our goal is not to present a
detailed, material-specific description, but to illustrate gen-
eral ideas also applicable to other puzzling Fermi systems,
such as 3He films [13,14].

Let us consider a system of itinerant electron quasipar-
ticles characterized by dispersion "p, where " is energy
measured from the chemical potential and p is momentum.
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The spin susceptibility �0 per one electron is

�0 � ��2
e

Z dn�"p�

d"p
d�p �

�2
e

T

Z
n�p��1� n�p��d�p;

(1)

where d�p � 2d3p=��2�@�3 is the volume element in 3D
momentum space, � is the electron concentration, and �e
is the magnetic moment of electron in a solid. In a simple
case, �e is equal to the Bohr magneton �B, but, for heavy
fermions, �e may also contain a contribution from the
orbital angular momentum, as discussed later in this
Letter. The occupation numbers n�p� are given by the
Fermi distribution function

n�p� � �1� exp�"p=T��
�1 (2)

where the Boltzmann constant kB is set to 1. In ordinary
Fermi liquids, "p 	 vF�p� pF�, where pF is the Fermi
momentum and vF is the Fermi velocity. In this case, the
integral in Eq. (1) is proportional to T, and �0�T� �
�2
eN0=� � const, where N0 � p2

F=�
2vF is the density of

states at the Fermi level. Accounting for the spin-spin
interaction amplitude g0 modifies Eq. (1) via the Stoner
factor: � � �0=�1� g0�0�.

The quasiparticle dispersion "p is affected by the
Landau interaction function fL�p;p0� � �"p=�n�p0�. In
general, fL�p;p0� is a functional of the occupation num-
bers n�p�, but here, for the sake of illustration, we take
fL�p;p0� as a given function. Then, "p is related to the bare
dispersion "0

p as

"p � "0
p �

Z
fL�p;p0�n�p0�d�p0 : (3)

The dispersion "p and the occupation numbers n�p� are
obtained by solving Eqs. (2) and (3) self-consistently.
When the interaction fL is weak, Eq. (3) merely renor-
malizes the Fermi velocity. However, when the interac-
tion strength exceeds a critical value, the minimum of the
2-1 © 2005 The American Physical Society
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total energy at T � 0 may be achieved in a radically differ-
ent state with the fermion condensate [9]. In this state, the
quasiparticle spectrum is completely flat "p � 0 at T � 0
in some region of momentum space, where the occupation
function n
�p� continuously interpolates between 0 and 1
[9]. The increase of kinetic energy in this state is compen-
sated by the decrease of interaction energy. Nozières [10]
demonstrated that, at low T � 0, the momentum occupa-
tion function remains the same n�p� � n
�p� in the domain
occupied by the fermion condensate. Thus, the self-
consistent dispersion "p becomes temperature dependent,

"p � T ln
�
1� n
�p�
n
�p�

�
; (4)

as follows from the inversion of Eq. (2). The group velocity
@"p=@p in Eq. (4) is proportional to T, which generates a
sharp peak in the density of states with the height propor-
tional to 1=T and results in unusual thermodynamic prop-
erties discussed below. Measurements of magnetic
oscillations in the heavy-fermion metals indeed show enor-
mous flattening of "p relative to the band-structure calcu-
lations [8].

This qualitative analysis has been confirmed by analyti-
cal and numerical solutions of Eqs. (2) and (3) for various
interaction functions fL. As an example, in Fig. 1, we show
n�p� and "p numerically calculated for three different
temperatures for a toy model with an isotropic parabolic
ε
ε

ε

ε

FIG. 1 (color online). Quasiparticle properties of a system with
the fermion condensate, plotted vs p=pF for three temperatures
T: (a) the occupation numbers n�p�, (b) the single-particle
spectrum "p in the units of "0

F � p2
F=2m, and (inset) the ratio

"p=T.
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dispersion, characterized by the bare mass m and the bare
Fermi energy "0

F � p2
F=2m. The interaction function

fL�q�, where q � p� p0, was chosen to be fL�q� �
�=f�1� �q=2pF�2�2 � �2g with � � 0:48 and � �
3pFm=�2. Panel (a) shows that n�p� markedly differs
from a step function and does not depend on temperature
in the interval �p1; p2�. Panel (b) demonstrates that "p
changes with T, but the inset shows that the ratio "p=T is
T independent in the interval �p1; p2�, in agreement with
Eq. (4). Figure 1 illustrates that a self-consistent solution of
quite conventional equations (2) and (3) for a rather ge-
neric, nonsingular interaction function does generate the
fermion condensate. Similar results were found for other
isotropic and crystal lattice models, where p is quasimo-
mentum in the Brillouin zone: see Ref. [15] and references
therein. The results are robust and do not depend signifi-
cantly on model details. Although the toy model utilized
for the calculations shown in Fig. 1 is not necessarily
realistic for specific materials, the fermion-condensate for-
mation is a generic process, and only the fermion-
condensate parameters, not the model details, matter for
observable quantities.

Now let us discuss observable manifestations of
the fermion-condensate state in detail. Substituting the
temperature-independent occupation function n
�p� of
the fermion condensate into Eq. (1), we find a Curie con-
tribution to the spin susceptibility [16]

�0�
	�2

e

T
� ~��T�; 	�

Z p2

p1

n
�p��1�n
�p��d�p; (5)

even though all electrons are itinerant. The effective Curie
constant in Eq. (5) is reduced by the dimensionless pa-
rameter 	 relative to the Curie law �0 � �2

e=T of a non-
degenerate Fermi gas at high temperatures T > "0

F. The
second term ~� in Eq. (5) comes from integration outside of
the fermion-condensate domain �p1; p2� in Eq. (1). This
term is less singular than the Curie term, which dominates
at low T. Accounting for the spin interaction amplitude g0

generates the Curie-Weiss law ��T� 	 �2
e	=�T ��W�

with the Weiss temperature �W � g0	�2
e. The numeri-

cally calculated �0�T� for the same model as in Fig. 1 is
shown by the solid line in Fig. 2(a). The finite value of the
product �0T in the limit T ! 0 indicates the Curie behav-
ior at low temperatures and gives the value 	 	 0:1 in this
model. In a wide temperature range, �0�T� shown in
Fig. 2(a) does not strictly follow the Curie law because
of ~��T�.

In 3He films, the low-T Curie constant is about 4 time
lower than the high-T one, as shown in Fig. 1 of Ref. [13],
which gives 	 	 0:25 in this case. To evaluate 	 for the
heavy-fermion metals from Eq. (5), we need to know the
magnetic moment � of f electrons, which has spin and
orbital contributions. In a free atom, � � gL�BJ, where
gL is the Landé factor and J is the total angular momen-
tum. The crystal field lifts degeneracy between energy
levels with different projections Jz and causes magnetic
2-2
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FIG. 2 (color online). Thermodynamic properties of a
fermion-condensate system. (a) The spin susceptibility
�0T=3�2

e (solid line) and the specific heat C=�2 (dashed line)
vs temperature T. Inset: the same variables in the log-log scale.
(b) The Sommerfeld-Wilson ratio (solid line) vs T. The dotted
lines in panels (a) and (b) correspond to the Fermi gas.
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anisotropy. In CeCoIn5, there is one f electron with J �
5=2, and the c axis is the easy magnetic axis. Thus, the
lowest energy levels have Jz � �5=2, and the effective
magnetic moment along the c axis is �e � �BgLJz �
2:14�B, where Jz � 5=2 and gL � 0:857 for L � 3, S �
1=2, and J � 5=2. As shown in Fig. 3 of Ref. [3], the low-T
Curie law in CeCoIn5 is the most pronounced for the easy
axis c with the Curie constant 0:2�2

B. This value is much
smaller than �2

e, and we find from Eq. (5) that 	 �
0:2�2

B=�2:14�B�
2 � 0:044.

The entropy S per one particle for an ensemble of
fermion quasiparticles is given by the formula

S��
Z
fn�p�lnn�p���1�n�p��ln�1�n�p��gd�p: (6)

In ordinary Fermi liquids, the integrand in Eq. (6) differs
from zero only in a narrow vicinity of the Fermi surface,
so S � T�2=vFpF, and S! 0 when T ! 0. In contrast,
in the fermion-condensate state with the occupation func-
tion n
�p�, the integrand is nonzero in a finite region, so
the entropy has a temperature-independent contribution S
.
Extrapolating the normal-state S�T� from the inset in Fig. 2
of Ref. [4] to T ! 0, we estimate that S
 	 0:1 ln2
in CeCoIn5. We see that S
 is finite, but much smaller
than ln2 expected for an ensemble of localized spins
1=2. Because it is proportional to the momentum-space
volume occupied by the fermion condensate, S
 may de-
pend on external parameters, such as pressure P, so that
@S
=@P � 0.
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In ordinary Fermi liquids, the specific heat C �
T�@S=@T� is proportional to T. The straight line of slope
1=2 in Fig. 2(a) shows C=�2 and �0T=3�2

e vs T="0
F for a

Fermi gas. The fermion condensate does not contribute to
the specific heat, because its entropy S
 is T independent.
So, the main contribution to C comes from the regions in
momentum space where "p interpolates between the fer-
mion condensate and the regular dispersion (see Fig. 1).
When the fermion-condensate domain is small, "p has
inflection points [16,17], and the leading term in "p is
proportional to �p� p1�

3 for "p < 0 and �p� p2�
3 for

"p > 0, which gives C / T1=3 and ~� / T�2=3. The dashed
line in Fig. 2(a) shows the numerically calculated C�T� for
the same model as in Fig. 1, which indeed exhibits a
sublinear power law. Because the calculated �0T and C
have different temperature dependences, the Sommerfeld-
Wilson (SW) ratio R�0�SW � �2�0T=3C�2

e increases with
decreasing T, as shown by the solid line in Fig. 2(b) and
observed in heavy fermions [18]. This is in contrast to
ordinary Fermi liquids, where R�0�SW � 1, as shown by the
horizontal line in Fig. 2(b). Notice that the Stoner factor is
not included in our definition of R�0�SW.

Although the excessive entropy S
 of the fermion
condensate does not contribute to the specific heat, it
produces an enormous enhancement of the thermal ex-
pansion coefficient 
 � @V=@T � �@S=@P and the
Grüneisen ratio � � 
=C [19]. In ordinary Fermi
liquids, S / T, thus 
 / T vanishes at T ! 0, and
��T� � const. In contrast, for the fermion condens-
ate, the derivative @S
=@P is T independent, so 
 has a
finite value at T ! 0. Experiment [20] shows that 
 is
indeed temperature independent at low T and exceeds
typical values for ordinary metals by the factor of
103–104. With 
! const and C�T� ! 0, the Grüneisen
ratio � � 
=C diverges at low T, which is observed ex-
perimentally [21].

However, the existence of the residual entropy S
 at
T ! 0 contradicts the third law of thermodynamics (the
Nernst theorem). To ensure that S � 0 at T � 0, localized
spins order magnetically due to spin-spin interaction. Simi-
larly, a system with the fermion condensate must ex-
perience some sort of a low-temperature phase transi-
tion eliminating the excessive entropy S
. Here we focus
on the second-order phase transition to a superconducting
state [9]. The progressive increase of the fermion-
condensate density of states with decreasing temperature
facilitates superconducting instability in one of the pairing
channels: s, p, d, etc. Elementary excitations in a super-
conductor are the Bogolyubov quasiparticles, whose spec-

trum Ep �
������������������
"2
p ��2

p

q
has the energy gap �p. The entropy

of a superconductor is given by Eq. (6) with n�"p� !
f�Ep�, where f�Ep� are the occupation numbers of the
Bogolyubov quasiparticles. Because of the energy gap,
f ! 0, and so S! 0 at T ! 0, thus the Nernst theorem
is satisfied. However, in order to release the excessive
2-3
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entropy S
, the specific heat jump �C at the transition
temperature Tc is enhanced.

The specific heat Cs of a superconductor is Cs �R
d�pEpdf�Ep�=dT. Taking the difference between Cs

and Cn, the specific heat in the normal state, we find the
specific heat jump at Tc:

�C � Cs � Cn � �
1

2Tc

Z d�2
p

dT
n�p��1� n�p��d�p:

(7)

In the BCS theory, d�2=2TcdT � �4�2=7��3� 	 �4:7,
where � is the zeta function. (For d-wave pairing, the
number is different, but the results do not change signifi-
cantly.) Comparing Eqs. (1) and (7), we find

�C � 4:7Tc�0=�2
e � 1:43CnR

�0�
SW: (8)

Equation (8) shows that the specific heat jump �C can be
expressed in terms of either �0�Tc� or Cn�Tc�. For ordi-
nary Fermi liquids, where the Sommerfeld-Wilson ratio
R�0�SW � 1, Eq. (8) reproduces the familiar BCS relation
�C=Cn � 1:43. However, in the fermion-condensate state,
R�0�SW changes with temperature, so �C=Cn does not have a
universal value. Since �0 / 1=T, the specific heat jump (8)
is not proportional to Tc, but is related to the fermion-
condensate parameter 	 in the Curie law (5) [22]:

�C 	 4:7	: (9)

Thus, the ratio �C=Cn can be very high when Tc is low,
because Cn ! 0 at T ! 0 while �C is finite.

Let us apply this analysis to CeCoIn5, where Tc �
2:3 K. In this material [4], �C=Cn 	 4:5 is substantially
higher than the BCS value, in agreement with our argu-
ments. Using the value 	 	 0:044 evaluated from the Curie
law, we estimate the right-hand side of Eq. (9) as 0.21. This
is about a half of the experimental value of �C 	 0:42 per
electron measured in Ref. [23]. However, as shown in
Fig. 3 of Ref. [3], the Curie term constitutes only about a
half of the spin susceptibility at Tc. Thus, using the total
susceptibility, we find that the relation (8) between �C and
�0 is satisfied. In PuCoGa5, we also attribute the Curie law,
followed by a superconducting transition at Tc � 18:5 K
[5], to the fermion condensate. However, a quantitative
estimate of 	 is difficult in this case, because plutonium
has five f electrons. Interestingly, if plutonium is replaced
by uranium, the resulting material UCoGa5 does not ex-
hibit the Curie law and does not have superconducting
transition [5]. This is surprising from a conventional point
of view, where ‘‘itinerant’’ electrons in UCoGa5 should be
more susceptible to superconducting pairing than ‘‘local-
ized’’ electrons in PuCoGa5. However, if the fermion
condensate does not form in UCoGa5, so that there is no
Curie law, then the density of states is not enhanced, and
superconductivity is not facilitated.

In conclusion, we have shown that strongly interacting
Fermi liquids can form a fermion-condensate state, where
23640
quasiparticle dispersion "p is flat at the Fermi level. Their
magnetic susceptibility �0�T� exhibits the Curie-Weiss law
with the effective Curie constant reduced by the fermion-
condensate parameter 	. The entropy has the temperature-
independent term S
 (estimated as S
 	 0:1 ln2 per elec-
tron in CeCoIn5), which greatly increases the thermal
expansion coefficient 
 � �@S=@P at low T. The exces-
sive entropy S
 is released below the superconducting
transition temperature Tc, which dramatically reduces 

and enhances the specific heat jump �C=Cn, as observed in
CeCoIn5 [4,20]. The universal relation (8) between �C and
Tc�0�Tc� can be tested experimentally by checking
whether the both quantities change proportionally upon
variation of external parameters, such as pressure or
chemical substitution [7,24].
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