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Shear-Thickening and Entropy-Driven Reentrance
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We discuss a generic mechanism for shear thickening analogous to entropy-driven phase reentrance.
We implement it in the context of nonrelaxational mean-field glassy systems: although very simple, the
microscopic models we study present a dynamical phase diagram with second- and first-order stirring-
induced jamming transitions leading to intermittency, metastability, and phase coexistence as seen in some
experiments. The jammed state is fragile with respect to change in the stirring direction. Our approach
provides a direct derivation of a mode-coupling theory of shear thickening.
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When liquids are subjected to strong stirring, in general
their viscosity decreases, a phenomenon known as ‘‘shear
thinning.’’ The opposite (‘‘shear-thickening’’) behavior
when stirring leads to increased jamming is rather excep-
tional and intriguing [1]. That shear thinning should be
generic is quite easy to understand by considering the
structure of any system having a large viscosity and long
relaxation time scales. From the point of view of the phase-
space energy landscape, the long relaxation times are the
consequence of directions that are either almost flat, or
contain barriers that can only just be crossed. When the
system is stirred by nonconservative forces, displacements
are easily induced along these directions, and this has the
effect of speeding the relaxation. From the real space point
of view, slow relaxations are linked to extended dynami-
cally correlated spatial regions [2], and stirring tends to
break off these domains, thus making the system more
fluid. It is thus no surprise that just about any system
(and any model) will naturally exhibit shear thinning.

For shear thickening instead, several explanations have
been attempted, and it is at present not clear whether a
universal one will apply for all possible systems. There are
indications that jamming in particulate suspensions is re-
lated to increased disorder [3], and in some cases to the
formation of clusters of particles in lubrication contact
[4,5]. To the extent that at large densities the strongly
jammed state has the appearance of an amorphous, glassy
solid, shear thickening may be thought of as a consequence
of an underlying glass transition induced by stirring [6].
For such collective behavior one can attempt a theory with
less focus on the details but founded on notions that are
thought to be generic of glasses: this has suggested, for
example, the casting of the problem in a mode-coupling
format [6].

In this Letter we attempt a microscopic setting in which
glassiness and shear thickening emerge naturally and are
simultaneously understood. The basic idea is to exploit the
analogy between entropy-driven transitions in which sys-
tems freeze upon heating and those in which they jam
under the action of stirring. To obtain concrete results,
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we discuss this idea within the ‘‘random first-order’’ sce-
nario for the glass transition, although it is not restricted to
it. In its simplest version, the random first-order scenario
applies to models of fully connected degrees of freedom
and a complicated set of interactions with or without
quenched disorder [7,8]. It allows for a unified description
of the (fragile) glass transition, both from the dynamical
and from phase-space landscape points of view. The ap-
proach contains as a special, high temperature case the
mode-coupling theory [9], while in the low temperature
regime it provides a theory for aging [8]. As is character-
istic of this approach, it has the satisfactory feature that
many different aspects of the collective behavior follow
without further assumptions, and the weakness that spatial
features are not (for the moment) fully incorporated.

Introducing stirring.—Shear thinning appears naturally
if one considers the action of ‘‘stirring’’ terms capable of
generating permanent currents, i.e., forces that do not
derive from a (global, time-independent) potential. A use-
ful, though approximate, way to see the effect of random
stirring is the following: consider a system with coordi-
nates xi evolving according to some form of dynamics
(Langevin, Monte Carlo, molecular dynamics) in contact
with a heat bath at temperature T and under the action of a
potential and of stirring forces fstir

i acting on the ith degree
of freedom. Stirring forces are by definition nonconserva-
tive; suppose (although this is inessential) they are linear:
fstir
i � Jas

ij xj. If we make the simplifying though rather
crude assumption that the Jas

ij are long range, randomly
distributed (so Jas

ij is asymmetric), and uncorrelated, one
can easily show [10,11] that on average fstir

i � �i�t�where
�i�t� are Gaussian noises with correlations h�i�t��j�t0�i �
�ijC�t; t

0� where C�t; t0� �
P
khxk�t�xk�t

0�i=N is the two-
time autocorrelation function. The stirring thus provides
a random noise unmatched by a friction term: this can be
seen as a coupling to an infinite temperature (self-
consistent) bath [12]. Just like in any stirring situation, if
the system for some reason does not flow, the noise �i
becomes time independent and hence does no work.
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FIG. 1 (color online). Energy density vs time after a system
(size N � 128) in the liquid phase at T � 0:03 and D � 3:0 was
taken to the jammed phase by a stirring force with " � 1:6 and
� � 0:2.
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The generic situation when the (e.g., Monte Carlo) dy-
namics is perturbed by a nonconservative force is that the
structural �-relaxation time becomes shorter—a shear-
thinning effect—and that a two-temperature regime
emerges [13] even in the supercooled liquid phase. This
scenario has been tested in realistic systems [14] and the
agreement is impressive. In contrast to the case of shear
thinning, there has as yet been no way to introduce or
understand shear thickening in these terms, and a phe-
nomenological construction with a mode-coupling flavor
has to be introduced in a somewhat ad hoc manner, with no
underlying microscopic model [6].

A phase reentrance mechanism.—Let us review briefly a
microscopic mechanism [15] for freezing induced by heat-
ing (inverse freezing). Suppose one has an ensemble of
molecules (e.g., polymers) that have a low temperature
(‘‘folded’’) state in which they are mutually weakly inter-
acting, and a higher temperature (‘‘unfolded’’) state which
is favored entropically and in which they interact strongly
with each other. As temperature is increased, each polymer
unfolds and reaches out to the other polymers; the resulting
entangling thus may lead to a glass transition. A further
increase of temperature will eventually lead back to a
liquid phase.

In order to obtain a minimal model of a liquid that upon
heating is driven by entropy into a glass, one can consider
[15] spins taking values 0, �1, and a Hamiltonian consist-
ing of a term /

P
is

2
i favoring the folded configurations

si � 0, and an interaction term
P
ijJijsisj that is active

when the spins are in the unfolded states si � �1:

H � �2
X

ij

Jijsisj �D
X

i

s2
i : (1)

The entropic favoring of the si � �1 configurations is
enhanced by making these states r-fold degenerate.
Schupper and Shnerb chose the interactions Jij from a fully
connected Gaussian distribution, thus obtaining a spin-
glass-like phase [16]. If instead one wishes to model a
structural (fragile) glass behavior, one may choose inter-
actions as in either the random orthogonal model [17], or to
consider a p-spin interaction model with spin 1 variables
like in Ref. [18]. We have studied the equilibrium phase
diagram of the former model in detail and found, for large
enough r, a reentrant behavior in both the dynamic and
static glass transition line. The structural glass transition in
this model can be either thermodynamically first or second
order (i.e., with or without latent heat), depending on the
value of D [19].

Shear-thickening models.—As mentioned above, stir-
ring is somewhat analogous (and in the example above
exactly equivalent) to coupling to a high temperature bath.
One can thus imagine that in a problem with phase reen-
trance, stirring might induce a transition from the liquid to
the glassy phase. This is clear in the folded polymer prob-
lem described above: taking into account the known fact
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that shearing [20] or random stirring [21] can make poly-
mers unfold to the interacting state, this may result in an
increase in the viscosity of the polymer melt. Shear thick-
ening is in such cases a form of phase reentrance [22].

What we have discussed so far suggests that one can
model shear thickening by considering a nonconservative
forcing acting on a reentrant model, for example, a force
field fstir

i acting on the ith spin of (1):

fstir
i � "

X

j

Jas
ij �1� s

2
j � � �

X

j

Kas
ij sj; (2)

where Jas
ij � �J

as
ji and Kas

ij � �K
as
ji are independent

Gaussian random variables with zero mean and variance
1=N. The two components of the force field act indepen-
dently on the folded and the unfolded configurations with
stirring strengths " and �, respectively [23].

Phase diagram—metastability and coexistence.—
Figure 1 shows the evolution of the energy of a small sys-
tem after stirring terms (2) were applied to the noninter-
acting ‘‘liquid’’ state. The fraction of �1 spin becomes
appreciable and in the energy versus time plots we observe
intermittent arrest and flow behavior with jumps between
long-lived interacting states. If the temperature is low and
stirring is not too strong, the system quickly falls in a state
that is for all practical purposes stable. Increasing the
stirring strength the trapping times become shorter, and
for sufficiently high stirring rates the system becomes a
normal (nonaging) liquid. We shall not discuss in detail the
shear-thinning (or rejuvenation) aspect, as it has been al-
ready extensively discussed in the literature [13,14].
Intermittent situations where the system jams and unjams
as in Fig. 1 have been observed [24].

The analysis of the temporal evolution of the energy and
the spin-spin correlation function allows to identify differ-
ent dynamical regimes and construct the dynamical phase
diagram by varying the several parameters characterizing
the system. Figure 2 shows a section of such a dynamical
phase diagram in terms of D and stirring strength ". The
weakly stirred liquid phase I has a low density of inter-
active sites � ’ 0. The ‘‘jammed’’ phase II is characterized
1-2
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FIG. 3 (color online). Flow curve along the constant D � 4
line for T � 0:05. � 	 " and _� 	 �=�� are the analogue of
stress and shear rate for a mean-field system. Note how the
intersection of the line D � 4 with the jammed phase in Fig. 2 is
reflected here. The inset shows the corresponding spin-spin
correlation function, C, vs time t, for increasing stress (system
size N � 500).
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FIG. 2 (color online). A section of the dynamical phase dia-
gram for temperature T � 0:05, � � 0:0, and r � 6. The tran-
sition between the phases I and II is first order below the point A
and second order above it.
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by a fraction of spins in the interactive �1 state and aging
(i.e., the progressive trapping in ever deeper interacting
states), and the liquid III regime for high stirring rates is
just the result of shear thinning of the jammed state. For
D< 2 and low temperature the system is glassy in the
absence of stirring. On increasing D and the stirring force
there is ‘‘first-order’’ jamming transition (below the point
A in Fig. 2) with hysteresis in ": along this curve the liquid
and jammed phases coexist. Above the point A the tran-
sition from phase I to phase II is a ‘‘second-order’’ jam-
ming transition without hysteresis, but with a regime in
which the system forms under stress an aging glass. For
much larger values of D there is no jamming for any
stirring, but there is continuous shear thickening when
the T � " trajectory followed passes near a transition line
in phase space.

In these mean-field models the dissipated power scales
as "2=��, where �� is the �-relaxation time of the sys-
tem [13]. Comparing to a standard shear flow this sug-
gests that the amplitude of the driving force, ", plays the
role of a stress, �, while "=�� is analogous to a shear rate,
_�. We may thus obtain the standard � versus _� flow curves

by increasing the stirring rate at constantD: they turn out to
be strikingly similar to those of Ref. [6]. In the main frame
of Fig. 3 we show an example of such flow curves corre-
sponding to the ‘‘full jamming’’ scenario of Ref. [25]. In
this case, one observes an interval of stress, in Fig. 3
between 1.65 and 2.2, within which the flow rate vanishes,
even if the system is ergodic at rest. The relaxation time,
��, was estimated as the time integral of the normalized
spin-spin correlation function. Examples of correlation
curves are shown in the inset of Fig. 3: shear-thickening
behavior (a slower decay of C) is observed when � in-
creases from 1.5 to 2.5, while shear thinning (a faster decay
of C) appears for higher stress (for � increasing from 2.5
to 4 in the inset of Fig. 3).
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In Ref. [26], an experiment is described in which a
concentrated suspension of non-Brownian particles is
driven by stirring from the liquid to a metastable jammed
phase. It would be interesting to see experimentally
whether the opposite situation, when the liquid is the
metastable phase, may occur.

Chain fragility and aging of the jammed phase.—One of
the properties of materials that are jammed by stirring that
we may wish to test in this model is the fragility with
respect to incremental stresses in a different direction [27].
If in a system in phase II we change the realization of
stirring forces from Jas

ij to Jas
ij cos�� J0as

ij sin�, and simi-
larly for Kas

ij , even for small � we find that the system
responds by rearranging its configuration, the faster the
larger the value of ��� 2 �0; �=2��, see Fig. 4.

Conclusions.—In this Letter we discussed a connection
between the mechanisms of entropy-driven phase reen-
trance and shear thickening. This relation may exist in
some cases just in principle, as the temperatures or chemi-
cal potentials needed to actually affect substantially the
particles may be in practical situations extremely high. The
present models are clearly schematic, but not much has
been put into them and yet we see the elementary constit-
uents self-organize to produce stirring-induced jamming
with aging and intermittency, non-Newtonian rheological
behavior like shear thinning and thickening, metastability,
and chain fragility.

Let us finally mention that one can also construct a
reentrant continuous model with p-spin interactions Hp

following the same idea outlined above [28]. From this
model one can immediately obtain mode coupling with
reentrance—and also shear thickening by adding stirring
forces of the form (2) to the Langevin dynamics _xi �
�@xiHp � 	i. Another interesting approach is to introduce
1-3
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FIG. 4 (color online). Chain fragility: mutual correlation, Q�t�,
of two identical jammed systems, in one of which the stirring
direction has been changed at time t � 0. � � �=2 corresponds
to the case in which the two systems have independent random
stirring forces, while in the case � � 0:2 the random stirring
forces are correlated.
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stirring terms in the mode-coupling models of colloids
with short-range attractive potentials [29]. This would
allow to investigate the intriguing perspective that stirring
can drive the liquid-liquid, the liquid-glass, and also the
glass-glass transition in such systems. Work along these
lines is in progress [28].
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