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Catastrophe Model for Fast Magnetic Reconnection Onset
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A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma
systems with magnetic free energy remain apparently stable for long times and then suddenly release their
energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow
(Sweet-Parker) solution and a fast (Alfvénic) Hall reconnection solution. Below a critical resistivity the
slow solution disappears and fast reconnection dominates. Scaling arguments predicting the two solutions
and the critical resistivity are confirmed with two-fluid simulations.
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Explosive events in plasmas, such as solar eruptions and
the sawtooth crash in laboratory fusion devices, are driven
by magnetic reconnection. Understanding the mechanism
facilitating fast reconnection in high temperature plasma
systems has been a long-standing challenge. Sweet-Parker
(SP) reconnection [1,2] is far too slow to explain observa-
tions and Petschek reconnection requires the invocation of
anomalous resistivity, a phenomenon that is at best only
poorly understood. A new paradigm has emerged in recent
years in which dispersive whistler and kinetic Alfvén
waves facilitate fast reconnection by setting up the open
Petschek configuration [3–5]. Magnetospheric satellite ob-
servations [6] and recent laboratory experiments [7] sup-
port this new paradigm.

It is not sufficient, however, to merely explain how fast
reconnection can occur. If reconnection were always fast,
magnetic stress could never build up in plasma systems
such as the solar corona, and the explosive release of
magnetic energy seen in nature and the laboratory would
never occur. It is critical, therefore, to explain why fast
reconnection does not always take place. We show that
there are generally two reconnection solutions for a given
set of parameters: slow reconnection as predicted by Sweet
and Parker, and fast collisionless reconnection facilitated
by coupling to dispersive waves in the dissipation region
(Hall reconnection). Below a critical resistivity the slow
solution disappears. The emerging picture, therefore, is
that slow reconnection can dominate the dynamics of a
system for long periods of time but the resulting rate of
reconnection is so slow that external forces can continue to
build up magnetic stresses. When the resistivity � drops
below a critical value (or the available free energy crosses a
threshold) the system abruptly transitions to fast reconnec-
tion and is manifest as a magnetic explosion. Such a model
complements earlier ideas that the onset of solar flares, for
example, results from the loss of MHD equilibrium [8,9] or
more complex ‘‘breakout’’ models [10].

A rather simple argument can be made to motivate why
magnetic reconnection is bistable, i.e., has two solutions
for a given set of parameters. The Sweet-Parker solution is
05=95(23)=235002(4)$23.00 23500
valid provided the half width of the current layer � exceeds
the relevant kinetic scale length [11],
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where L is the half length of the SP current sheet, di �
c=!pi is the ion inertial length, !pi is the ion plasma
frequency, and cA is the Alfvén speed evaluated immedi-
ately upstream of the current layer. In writing this equation,
we have restricted our attention to the case with no out of
plane magnetic (guide) field for simplicity. We take � to be
uniform throughout. Equation (1) implies that if a system is
undergoing SP reconnection and the resistivity is lowered,
SP reconnection will continue as long as Eq. (1) is satisfied.

Conversely, fast reconnection is valid provided the dis-
persive (whistler or kinetic Alfvén) waves that drive kinetic
reconnection [5] are not dissipated. With no guide field, the
relevant waves are whistler waves, generated by the Hall
term. The dispersion relation for resistive whistler waves is
! � k2cAdi � ik2�c2=4�. Since both terms scale like k2,
dissipation can only be neglected if it is small enough at all
spatial scales, that is,

�c2

4�
� cAdi: (2)

This can also be written as �ei � �ce, where �ei �
�ne2=me is the electron-ion collision frequency and
�ce � eB=mec is the electron cyclotron frequency. This
condition is typically easily satisfied in nature but is a
significant constraint as we attempt to verify the theory
with simulations. Equation (2) implies that if the system is
undergoing Hall reconnection and the resistivity is in-
creased, it will stay in the Hall configuration as long as
Eq. (2) is satisfied. Putting the two results together, if the
resistivity is an intermediate value such that both Eqs. (1)
and (2) are satisfied, then either solution is accessible.
Therefore, the system is bistable.

We now present estimates of the slow-to-fast (�sf) and
fast-to-slow (�fs) resistive transition boundaries of the
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FIG. 1. Normalized reconnection rate, E0, as a function of
island width, w, for the two sets of simulations described in
the text. The vertical dotted lines show when the added effects
were enabled. Note that the final parameters of the two solid line
simulations are identical.
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bistable regime. We estimate �sf by equating the left and
right hand sides of Eq. (1), giving

�sf
c2

4�cAdi
�
di
L
: (3)

To estimate �fs, we perform a Sweet-Parker-type scaling
analysis [2] that is more precise than the argument used to
motivate bistability in Eq. (2). Resistive effects are negli-
gible if the outward magnetic diffusion across the electron
current sheet, �c2=4��2, is less than the inward convec-
tion, vin=�, where vin is the flow speed into the electron
current layer. For Hall reconnection, numerical simulations
have shown that � scales like the electron inertial length

de � c=!pe [3], where !pe �
����������������������
4�ne2=me

p
is the electron

plasma frequency, and the inflow speed scales like vin �
0:1cAe [3,12], where cAe is the electron Alfvén speed based
on the magnetic field immediately upstream of the electron
current layer. The critical resistivity �fs is found by equat-
ing the two:
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or, using cAede � cAdi,
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where cA is evaluated upstream of the electron current
layer. This is consistent with Eq. (2), but more precise
due to the inclusion of the geometry of the layer. The ratio
of Eqs. (3) and (4) gives �sf=�fs � 10di=L� 1, which is
small because di � L for most systems of physical inter-
est. Thus, bistability is present over an extensive range of
resistivity.

The predictions of this model are amenable to tests
using numerical simulations. We use the two-fluid code,
F3D, a massively parallel code [13], to perform two-
dimensional simulations in a slab geometry of size Lx �
Ly. The initial equilibrium is two Harris sheets in a
double tearing mode configuration, B � x̂B0� tanh��y�
Ly=4	=w0
 � tanh��y� Ly=4	=w0
 � 1� with w0 � 2di
and periodic boundary conditions in both directions. The
ions are initially stationary and initial pressure balance is
enforced by a nonuniform density. For simplicity, we treat
an isothermal plasma. A coherent perturbation to induce
reconnection is seeded over the equilibrium magnetic field.
The resistivity � is constant and uniform. We use small
fourth-order dissipation, / �4r

4 with �4 � 2� 10�5, in
all of the equations to damp noise at the grid scale.

The computational domain must be chosen large enough
to have a discernible separation of scales between the SP
and Hall reconnection rates, but with high enough resolu-
tion to distinguish the electron inertial scale. We find that a
computational domain of Lx � Ly � 409:6di � 204:8di
with a resolution of �x � �y � 0:1di and an electron to
23500
ion mass ratio of me � mi=25 (i.e., de � 0:2di) is suffi-
cient. A further reduction of �x and �y by a factor of 2
does not alter the key results. Since the rate of Hall
reconnection is insensitive to the electron mass [4,14,15],
we do not expect our results to depend on our particular
choice of me. For this computational domain, we can
estimate �sf and �fs. In evaluating Eq. (3), we use L�
Lx=4 � 102:4di. Normalizing lengths to di and velocities
to cA0 � B0=

�����������������
4�n0mi
p

, where n0 is the initial density far
from the sheet, we obtain

�0sf � �sf
c2

4�cA0di
�
di
L
� 0:01:

To evaluate Eq. (4), we use the value of B� 0:3B0 up-
stream of the electron current layer measured in the simu-
lations to evaluate cA, so

�0fs � �fs
c2

4�cA0di
� 0:03:

A larger system would produce a greater separation be-
tween �0sf and �0fs and would be closer to the parameters
of real systems but would be more computationally
challenging.

To demonstrate bistability of reconnection with a resis-
tivity in the intermediate region �0sf <�0 <�0fs, we per-
form two related sets of simulations. First, we show that a
system undergoing Hall reconnection with a resistivity
below �0fs continues Hall reconnection for any value of
resistivity below this value. We start with a benchmark
collisionless (�0 � 0) Hall-MHD simulation that is run
from t � 0 until the rate of reconnection is steady. The
normalized reconnection rate E0 � cE=B0cA0 is shown as a
function of island width w as the thick solid line in Fig. 1.
The reconnection rate is calculated as the time rate of
2-2



PRL 95, 235002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005
change of magnetic flux between the X line and O line. The
rate of reconnection jumps to E0 � 0:06 by the time the
island width is 10di, after which it is remains steady. When
w� 35di, we enable a resistivity of�0 � 0:015 (which lies
between the predicted values of �0sf and �0fs) and continue
the simulation until most of the available magnetic flux has
been reconnected. For comparison, the thick dashed line
shows the reconnection rate when we maintain �0 � 0.
Clearly, the reconnection rate remains nearly unchanged
after the inclusion of the resistivity.

For the second set of simulations, we want to show that a
system undergoing SP reconnection continues to reconnect
at the lower rate for any value of resistivity exceeding �sf .
Our computational approach is to disable the Hall and
electron inertia terms and evolve the resistive system
with a resistivity that exceeds �sf . We then reenable the
Hall and electron inertia terms and continue to advance the
full equations. This benchmark simulation is performed
with �0 � 0:015 (the same value of resistivity as in the run
shown in the thick solid line in Fig. 1), and the reconnec-
tion rate is again plotted in Fig. 1 as the thin solid line. The
reconnection rate remains stationary with E0 � 0:01, a
factor of 6 slower than the Hall case even with the Hall
and electron inertia terms enabled. For comparison, the
thin dashed line in Fig. 1 shows the reconnection rate for a
system in which the Hall term is not enabled. Thus, the
Hall and the electron inertia terms do not impact the rate of
SP reconnection for these parameters.

The out of plane current density, Jz, is shown at late time
in Fig. 2 for the runs corresponding to the two solid curves
in Fig. 1. The top plot corresponds to the thick solid curve.
The current sheet is short and opens wide, as is expected in
Hall reconnection [3,16–20]. The bottom plot corresponds
to the thin solid curve. The current sheet is long and thin as
is expected from the SP theory of resistive reconnection
[21–23]. Since the same equations govern the two sets of
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FIG. 2 (color online). Out of plane current density, Jz, for late
times from the two solid lines of Fig. 1. The top plot corresponds
to the thick solid line (Hall reconnection). The bottom plot
corresponds to the thin solid line (SP reconnection).
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data and the value of the resistivity is the same, we con-
clude that the system is bistable.

Next, we test the predictions of �sf and �fs by varying
the resistivities of the benchmark Hall and SP reconnection
solutions of Fig. 1. For the case of Hall reconnection,
corresponding to the thick solid line in Fig. 1, we change
�0 from 0.0 to 0.010, 0.013, 0.015, 0.0175, 0.020, 0.0225,
0.025, and 0.030 when w� 35di. For the case of SP
reconnection, corresponding to the thin solid line in
Fig. 1, we change �0 from 0.015 to 0.003, 0.007, 0.009,
0.011, 0.013, 0.0175, 0.020, 0.0225, 0.025, and 0.030 when
w� 50di (a short time after the Hall and electron inertia
terms have been reenabled). The asymptotic reconnection
rate is computed as the time averaged reconnection rate
once transients have died away.

The results are plotted in Fig. 3(a), with the states
starting from Hall reconnection plotted as open circles
and the states starting from SP plotted as closed circles.
The closed circles reveal that the disappearance of the SP
solution occurs abruptly, with�0sf between 0.011 and 0.013.
The open circles reveal the disappearance of the Hall
reconnection configuration, with �0fs between 0.020 and
0.0225. The error bars are due to random fluctuations in
the reconnection rate. The plot is reminiscent of what one
would expect of a bifurcation diagram for a system with a
cusp catastrophe.

Thus, the numerical simulations confirm that magnetic
reconnection is bistable over a range of resistivity consis-
tent with the scaling law predictions of �0sf � 0:01 and
�0fs � 0:03. The asymptotic steady state current sheet width
i
E

FIG. 3. (a) Steady state normalized reconnection rate, E0, as a
function of normalized resistivity, �0 for runs analogous to those
in Fig. 1 as described in the text. (b) Current sheet width, �, as a
function of �0 for the simulations in (a).

2-3



ci

FIG. 4. Normalized reconnection rate, E0, as a function of time
t (in units of ��1

ci ) for the simulation which is started at �0 �
0:015, reduced to 0.007, then increased back to 0.015.
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�, calculated as the half width at half maximum of Jz�y	 at
the X line, is plotted in Fig. 3(b) for each of the runs. As
predicted by Eq. (1), the steady state SP current sheet width
� is of order di when the resistive reconnection solution
ceases to exist, as is shown by the closed circles of
Fig. 3(b).

We emphasize that the results presented in Fig. 3, though
generated by a specific numerical procedure, are not sen-
sitive to the details of this procedure. To demonstrate this,
we show that the key feature of Fig. 3, the boundary where
the slow reconnection solution disappears, can be repro-
duced through a hysteresis-like procedure: in the simula-
tion corresponding to the thin solid line in Fig. 1, we first
lower the resistivity from �0 � 0:015 to �0 � 0:007 at t �
1098��1

ci (when the island width is about w� 50di). As
expected from Fig. 3 and shown in Fig. 4, the transition
from SP to Hall reconnection occurs. We then raise the
resistivity back to �0 � 0:015 (the original value) at t �
1518��1

ci (when the island width is about w� 68di). As
can be seen in Fig. 4, fast reconnection continues, showing
that the system can be in either of two steady states for the
same set of parameters.

Finally, we compare our predictions for onset with ob-
servations of solar eruptions, for which there is a small
guide field. Using values of n� 1010 cm�3, L� 109 cm,
and B� 100 G [24], Eq. (3) gives a critical resistivity of
�sf � 10�16 s in cgs units. Using the Spitzer formula, this
corresponds to a temperature of 102 eV� 106 K, in ex-
cellent agreement with the observed coronal temperature.
The onset of fast reconnection could therefore take place
either as the local coronal temperature or the upstream
magnetic field [reflected in cA in Eq. (1)] increases suffi-
ciently. In the corona, stronger upstream magnetic fields
are expected to convect into the X line as reconnection
proceeds so the upstream field does increase with time.

The effect of collisionality on the reconnection rate was
recently explored in the magnetic reconnection experiment
(MRX) [25]. Fast reconnection was only measured when
the width of the SP current layer fell below di, consistent
23500
with the simulation data presented in Fig. 3(b). In MRX,
fast reconnection has been correlated with magnetic turbu-
lence localized in the reconnection layer [26]. Since the
present simulations are limited to 2D we cannot address the
development of this turbulence and how it might impact
our conclusions. An alternative to the present model for
fast reconnection onset might involve the onset of strong
turbulence and associated anomalous resistivity.

In future work, we will explore whether Eq. (1) holds in
the presence of a guide field, for which �s rather than di is
the relevant kinetic length scale [11]. This may be relevant
to the onset of the sawtooth crash in tokamak plasmas.
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