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Reversible Destruction of Dynamical Localization
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Dynamical localization is a localization phenomenon taking place, for example, in the quantum
periodically driven kicked rotor. It is due to subtle quantum destructive interferences and is thus of
intrinsic quantum origin. It has been shown that deviation from strict periodicity in the driving rapidly
destroys dynamical localization. We report experimental results showing that this destruction is partially
reversible when the deterministic perturbation that destroyed it is slowly reversed. We also provide an
explanation for the partial character of the reversibility.
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Dynamical localization (DL) is one of the most dramatic
manifestations of how the quantum behavior of a com-
plex system may differ from that of its classical counter-
part [1]. It takes place in one-dimensional time-periodic
Hamiltonian systems where the deterministic motion is
classically chaotic and, on the average, equivalent to a
diffusive expansion in momentum space (the so-called
chaotic diffusion behavior). Because of subtle destructive
interference effects, the quantum dynamics is substantially
different: while this dynamics is similar to the classical one
for short times, the diffusive behavior stops after some
break time and the quantum momentum distribution gets
frozen to a steady state at long times. Interest in the DL also
comes from the fact that it can be easily observed experi-
mentally, e.g., by placing laser-cooled atoms in a periodi-
cally kicked laser standing wave, the so-called ‘‘kicked
rotor’’ [2]. The quantum inhibition of classical transport is
a rather generic behavior in one-dimensional time-periodic
Hamiltonian systems. It relies on the existence of a class of
states which are stationary under the one-cycle evolution
operator, the so-called Floquet states, forming a basis of
the Hilbert space. DL is thus a rather robust feature, which
can be observed for a large class of initial states, either pure
states or statistical mixtures.

Another fascinating feature of DL is its sensitivity to
external nonperiodic perturbations or deviations from the
temporal periodicity of the system [3]. Various ways of
breaking DL have been studied experimentally and theo-
retically. One way is to add amplitude noise to the kicks
[4]. In such cases, it has been observed that DL is de-
stroyed, i.e., that the quantum motion remains diffusive at
long times, as the classical motion. This destruction has
also been observed by adding a second series of kicks at an
incommensurate frequency [5], an experiment that has also
evidenced a very high sensitivity to frequency differences,
allowing observation of sub-Fourier resonances [6].
Another qualitatively different way of destroying DL is
to introduce a small amount of spontaneous emission in the
system, thus breaking its quantum coherences [4,7]. While
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the first two examples correspond to a purely Hamiltonian
evolution, the latter one introduces an irreversible dissipa-
tive evolution.

In the case of a purely Hamiltonian dynamics, a funda-
mental question remains, concerning the nature of the DL
destruction: is this destruction complete and irreversible or
is it possible to stop the diffusive behavior? Even better, is
it possible to reverse the evolution and reconstruct a more
localized state? The purpose of this Letter is to report
experimental results showing that such a relocalization is
possible (at least partially) when the nonperiodic perturba-
tion that destroys DL is slowly reversed in time.

Let us first consider the standard kicked rotor
Hamiltonian of a single atom in a pulsed standing wave
(SW):
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P2
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where P is the reduced momentum along the SW axis in
units ofM=�2kLT1� (kL is the laser wave number andM the
mass of the atom), � � 2kLz the reduced position of the
atom along the SW axis, and K � �2T1�@k2

L=�2M�L� the
kick strength (� is the resonant Rabi frequency of the SW,
�L its detuning from the atomic resonance). The time t is
measured in units of the period T1 of the kicks. N is the
number of kicks, and �� is a Dirac-like function; � is the
finite duration of the kicks. In the limit �! 0, the dynam-
ics of this Hamiltonian system is well known and relies
upon only two parameters: K and the effective Planck
constant k- � 4@k2

LT1=M. For K� 1, the classical dynam-
ics is a chaotic diffusion; a localized set of initial condi-
tions will spread in momentum space like a Gaussian of
width / t1=2. Below the break time, the classical and the
quantum dynamics of an initially localized state are iden-
tical. After the localization time, the quantum dynamics is
frozen, the average kinetic energy ceases to grow; at the
same time, the momentum distribution evolves from a
characteristic Gaussian shape in the diffusive regime to
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FIG. 1 (color online). Experimentally measured velocity dis-
tributions as a function of time. The atomic velocity is measured
in units of the recoil velocity vr � @kL=M ’ 3:5 mm=s. At short
times, the diffusive broadening (or the reduction of the zero-
velocity population) of the velocity distribution is observed.
When the slowly changing perturbation is reversed (around t �
17), the velocity distribution starts to shrink. This is highly
nontrivial behavior, showing that the destruction of dynamical
localization by a slowly time-varying kick sequence is revers-
ible. After a second cycle of the perturbation a second relocal-
ization of the velocity distribution is observed (around t � 70).
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an exponential shape � exp��jPj=L� (with L being the
localization length) characteristic of the localized regime
[8,9].

Consider now an experiment in which a slowly increas-
ing and then decreasing perturbation is added. This pertur-
bation is added to Hamiltonian (1) as a second series of
kicks with the same frequency but with a time dependent
amplitude (see upper frame in Fig. 2):
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where �� 1 is the period of the perturbation, � the
relative phase between the two kick series, and " the
modulation amplitude, with "� 1. Experimental values
are � � 35, �=2� � 1=6, and " � 0:94. At time t � N,
the system has been exposed to N kicks of the primary
sequence (with fixed strength K) and N kicks of the sec-
ondary sequence (with time-varying strength), i.e., to a
total of 2N pulses.

In order to experimentally realize the Hamiltonian equa-
tion (2), a sample of cold cesium atoms is produced in a
standard magneto-optical trap and released in the Fg � 4
hyperfine ground-state sublevel. A double sequence of N
pulses built according to Eq. (2) is applied. The SW is de-
tuned by �L=2��20 GHz (�3800 �, where � is the natu-
ral width of the atomic transition) with respect to the 6S1=2,
Fg�4!6P3=2, Fe�5 hyperfine transition of the Cesium
D2 line (�L � 852 nm). Such largely detuned radiation
essentially induces stimulated transitions responsible for
conservative momentum exchanges with the atoms, so that
the dynamics is Hamiltonian. However, the SW laser line
presents a very broad low-level background (several hun-
dreds of GHz) responsible for a significant rate of dissipa-
tive spontaneous transitions. To get rid of this problem, the
SW passes through a 10 cm cesium cell before interacting
with the cold atoms. This filtering reduces the background
by more than 1 order of magnitude in a bandwidth of about
500 MHz around the cesium transitions. Finally, after
being transported by a polarization-maintaining fiber,
92 mW of laser light, collimated to a 1.5 mm waist, is
available for the experiment, and retro-reflected to build
the SW. The frequency of each kick series is set to 30 kHz,
and the duration of each kick to � � 0:6 �s. The parameter
K is �9, k- � 3:46, and the localization time �10 periods.
The localization time measured in units of the pulse period
and the localization length L measured in units of 2@kL
coincide, and both scale roughly as �K=k- �2 � 7. These
parameters have been chosen in order to optimize the
experimentally detected signal. (The setup allows varia-
tions of K from �0 to 15, and k- from �1:5 to 6). The
spontaneous emission rate is estimated to 0.06 per atom for
the maximum duration of the experiment. Once the SW
sequence is over, the atomic momentum distribution is
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probed with a velocity selective Raman pulse. Thanks to
the Doppler effect, and a well-chosen detuning, this pulse
transfers the atoms in a well-defined velocity class from the
hyperfine sublevel Fg � 4 to the Fg � 3 sublevel [10,11].
The atoms remaining in the Fg � 4 sublevel are pushed
away by a resonant laser beam. A resonant pulse brings the
selected atoms back in the Fg � 4 level where their num-
ber is measured by a resonant probe. The whole cycle starts
again to measure the population in another velocity class,
allowing us to reconstruct the full atomic momentum
distribution. Such a measurement is then performed for
increasing pulse numbers N.

A last precaution must, however, be taken. As discussed
above, the SW is intense enough to induce—for a few
atoms—a real transition from the level Fg � 4 to the ex-
cited state, followed by spontaneous emission leading pos-
sibly to the hyperfine level Fg � 3, whatever their momen-
tum. Those atoms would be optically repumped to the
Fg � 4 sublevel and detected, generating an incoherent,
N dependant, background. For each experiment, the
Raman detuning is set very far away (at 10 MHz, more
than 1000 recoil velocities), where the probability of find-
ing a Raman resonant atom is very low. Except for this
modification, the experiment is launched in exactly the
same conditions. The stray background is corrected by
subtracting the resulting signal from the resonant one.

Figure 1 shows the velocity distribution as a function of
N. As expected, the early dynamics is diffusive. DL is
expected around t � 10. Since the perturbation starts in-
creasing from t � 0, DL is not visible and one could
assume it is destroyed before it could be seen. However,
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when the perturbation is reversed, the distribution shrinks
and takes an exponential shape (see Fig. 2), signing a
partial ‘‘revival’’ of the localization. This is clearly visible
in Fig. 2 which displays the zero-velocity population �0 as
a function of N (red crossed solid line), which is inversely
proportional to the width of the distribution and therefore
directly proportional to the degree of localization.
Figures 2(a) and 2(b) display, respectively, the velocity
distribution at t � 17��=2, where the perturbation
reaches its maximum amplitude, and at t � � � 35,
where it is back to its minimum initial value. In 2(a), the
distribution is very well fitted by a Gaussian, whereas the
distribution in 2(b) is better fitted by an exponential. The
exponential shape at t � � is not the only remarkable fact.
The fact that the momentum distribution gets narrower (�0

increases) is highly significative. Indeed, the classical dy-
namics is diffusive and irreversible, forbidding, in the
general case [12], a return to a narrower distribution.
Furthermore, DL leads to the suppression of the classical
diffusion, i.e., a freezing of the velocity distribution; but it
cannot lead to a narrowing of the distribution, which is
precisely what is experimentally observed in Fig. 2. This is
a key point of the present experiment: it proves that the
exponential shape observed at t � �, where the perturba-
tion is zero, does not simply results from the DL that would
be observed in the periodic case, with no perturbation.

It is even possible to go further by proving the coherent
nature of the reversibility process. We have performed an
FIG. 2 (color online). Upper frame: kick sequence. Main
frame: Population in the zero-velocity class as a function of
the duration N of the pulse sequence with no resonant light
(crossed solid line) and with a 50 �W pulse of resonant light
applied at t � 17 (dashed line). The absence of revival in the
presence of resonant light (decoherence) is a clear-cut proof of
the importance of quantum interference for the reversibility of
the DL destruction. The inset (a) shows the Gaussian velocity
distribution at t � 17, near the maximum of the perturbation, in
the absence of resonant light; inset (b) shows an exponential
shape near the minimum of the perturbation, t � 35.
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additional experiment where a resonant laser pulse irradi-
ates the atomic cloud at t � 17. The intensity and detuning
of this pulse are set such that, on average, only one or two
spontaneous photons are emitted per atom. Its purpose is to
destroy the quantum coherences, with minimal heating and
mechanical effects. The two curves in Fig. 2 (with and
without the resonant pulse) are practically identical before
t � 17, which indicates that heating resulting from the
resonant pulse is negligible [13]. In the presence of reso-
nant light, the revival at t � 35 disappears almost com-
pletely (dashed line curve in Fig. 2). Moreover, the velocity
distribution (not shown in Fig. 2) is Gaussian around t �
35. This clearly proves that, in the absence of spontaneous
emission, although DL is not observed before t � 17, there
is a memory in the system which is destroyed by sponta-
neous emission. This reinforces the idea that, when the
perturbation is reversed, a dynamically localized state is
recovered, at least partially. In fact, the revival of DL is
only partial, and a part of it is irremediably destroyed. As
shown in Figs. 1 and 2, a second perturbation cycle from
t � � to 2� has been performed, and a second revival is
observed. However, its amplitude is smaller than the first
one, and the shape of the velocity distribution is also
damaged. This is due to fundamental reasons, although
spontaneous emission or experimental imperfections could
also contribute.

A detailed discussion of the physical processes at work
in our experiment is beyond the scope of this Letter, and
will be published elsewhere. We give here a few guidelines
to the theoretical interpretation. The robust structure be-
hind DL is the existence of Floquet states for a time-
periodic Hamiltonian system, which are eigenstates of
the evolution operator over one period. By their definition,
such states repeat identically (except for a phase factor) at
each kick and thus do not spread in momentum space. Any
initial state can be expanded on the complete set of Floquet
states. Chaotic diffusion is—in this picture—due to a
gradual dephasing of the various Floquet states (of differ-
ent eigenenergies) that contribute to the initial state.
However, a nontrivial property of the periodically kicked
rotor is that all Floquet states are localized in momentum
space [14]: this is the temporal analogy to Anderson local-
ization in disordered one-dimensional systems, as put on
firm ground in Ref. [15]. Only Floquet states localized
close to the initial (zero) momentum significantly overlap
with the initial state and contribute to the long term dy-
namics. At sufficiently long times, the various Floquet
states significantly contributing to the dynamics are com-
pletely dephased (in a characteristic time which is but the
break time), the momentum distribution covers all signifi-
cantly populated Floquet states, but cannot extend further
in momentum space, leading to the freezing of the diffusive
growth. When the dynamics is no longer exactly periodic,
population is transferred among the various Floquet
states, and Floquet states localized farther from P � 0
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can be populated. In this situation, DL is thus expected
to be destroyed. There is, however, a situation where such
an evolution can be controlled: if, at any time, the
Hamiltonian is almost periodic with, for example, a kick
strength K�t� slowly changing with time t, an adiabatic
approximation can be used. The atomic state at time t can
be expanded in terms of the ‘‘instantaneous’’ Floquet
eigenbasis corresponding to the local value of K�t�. If the
variation of K�t� is slow enough, the evolution is adiabatic
in the Floquet basis, meaning that the populations of the
Floquet eigenstates do not change with time, while the
eigenstates themselves evolve [16,17]. This leads to an
apparent diffusive broadening of the momentum distribu-
tion [18], but the robust Floquet structure is still under-
lying. To recover the localization, it is sufficient to reverse
the evolution of K�t� back to its initial value. One then
recovers the initial well localized Floquet eigenstates with
unchanged populations, i.e., a dynamically localized mo-
mentum distribution. This is the deep origin of the revival
of the localization experimentally observed above. Any
phenomenon breaking phase coherence (such as a sponta-
neous emission) will redistribute the atomic wave function
over other Floquet states, eliminating all possibility of
revival. However, the revival is only partial, because the
evolution cannot be made 100% adiabatic. Indeed, even for
very slow changes of K�t�, there are some avoided cross-
ings between various Floquet states of such size that they
will be crossed neither diabatically, nor adiabatically, and
will consequently redistribute the population over the
Floquet states, partially destroying the reversibility.

To summarize, we have observed that the destruction of
dynamical localization in the kicked rotor, induced by a
nonperiodic driving can be partially reversed. If the ex-
ternal driving evolves sufficiently slowly, some informa-
tion is carefully stored in the populations of the various
Floquet states. Although it is not visible in the momen-
tum distribution—which seems to follow an irreversible
diffusive broadening—it can be easily restored by revert-
ing the driving back to its initial value, producing a re-
localization of the wave function. We have also shown
that this intrinsically quantum behavior is destroyed by
decoherence, i.e., by adding spontaneous emission to the
experiment.
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