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Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces
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Surface-bound modes in metamaterials forged by drilling periodic hole arrays in perfect-conductor
surfaces are investigated by means of both analytical techniques and rigorous numerical solution of
Maxwell’s equations. It is shown that these metamaterials cannot be described in general by local,
frequency-dependent permittivities and permeabilities for small periods compared to the wavelength,
except in certain limiting cases that are discussed in detail. New related metamaterials are shown to
exhibit exciting optical properties that are elucidated in the light of our simple analytical approach.
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Structured metal surfaces offer a playground to yield
remarkable optical phenomena ranging from extraordinary
light transmission through subwavelength hole arrays [1]
to innovative types of surface resonances [2]. The relevant
role of surface plasmons [3] at visible and near-infrared
frequencies was emphasized in early developments [1,4],
while subsequent studies, following pioneering works in
the field [5,6], demonstrated similar effects in plasmon-
free good conductor films at microwave and THz frequen-
cies [7,8]. Recently, these two regimes have been con-
nected by the exciting prediction of Pendry et al. [2] of
surface resonances that mimic surface-plasmon behavior
in perfect-conductor surfaces (PCSs) textured with subwa-
velength holes, and by its subsequent experimental obser-
vation [9].

Surface plasmons, originally predicted by Ritchie [3],
have given birth to the rapidly growing field of plasmonics
owing to their potential application in areas as diverse as
biosensing [10], information processing via metal-surface
circuits [11], or laser technology [12]. Hence the impor-
tance of devising new ways to achieve surface-plasmon-
like behavior in different frequency domains (e.g., using
phonon polaritons in the infrared [13,14] or textured PCSs
at lower frequencies [2,9]).

In this Letter, we introduce a new approach to system-
atically study surface resonances in structured PCSs. This
allows us to provide further insight into recently proposed
holey metamaterials [2], for which we find significant
quantitative corrections in the surface mode dispersion
relations. Furthermore, we show that these kinds of mate-
rials cannot be represented in general by local, frequency-
dependent optical constants [��!� and ��!�], except in
some limiting cases. Finally, our results suggest a new
systematics in the analysis of textured PCSs that is applied
to related metamaterial designs.

We shall consider a planar PCS perforated by infinitely
deep square holes of side a arranged in a periodic square
array of period d small compared to the wavelength � and
filled with homogeneous material of permittivity �h and
permeability �h (�h � 1 will be used throughout this
05=95(23)=233901(4)$23.00 23390
work), as sketched in the inset of Fig. 1(a). Pendry et al.
[2] obtain the reflectivity of this surface by assuming that
the field inside the square holes can be approximated by
the lowest-frequency mode (i.e., the TE1;0 mode [15]).
This allows them to describe the bulk holey material by
effective local optical constants �k and �k for fields par-
allel to the surface and �? � �? � 1 for perpendicular
fields. In such a description, the reflection coefficient for
p-polarized incident light (external magnetic field parallel
to the surface) is given by Fresnel’s equation

rp �
kz � k

��������������
�k=�k

q

kz � k
��������������
�k=�k

q ; (1)

where k � 2�=� is the free-space light momentum, and kk
and kz �

����������������
k2 � k2

k

q
are the momentum components paral-

lel and perpendicular to the surface, respectively. The
surface resonances are signaled by the divergence of rp

for incident evanescent waves (kk > k), leading to

k2
k
� k2 � �

A3k4

d4 ; (2)

with A � a2 (the hole cross section) and � � 64�2
h=�

6 in
the long-wavelength limit of Ref. [2]. We shall demon-
strate below that a more accurate model that takes into
account the effect of higher-frequency modes inside the
holes still leads to an equation such as (2) but introduces
important corrections in � and does not permit describing
the holey material by local optical constants.

Figure 1 illustrates through a representative example a
comparison between the model of Ref. [2] (dashed curves)
and a rigorous numerical solution of Maxwell’s equations
obtained by expanding the electromagnetic field in terms
of diffracted plane waves outside the surface and square-
waveguide modes inside the holes (we find convergence
using 144 waveguide modes and 400 plane waves). Our
calculated results exhibit the same behavior as Eq. (2) in
the long-wavelength limit [Fig. 1(a)], although, as ex-
pected, the inclusion of diffraction orders outside the ma-
1-1 © 2005 The American Physical Society
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FIG. 2 (color online). (a) Electrostatic electric-field flow lines
for an empty hole drilled in a semi-infinite perfect-conductor
subject to an external field Eext perpendicular to the surface,
giving rise to an electric dipole p � �EEext as seen from afar.
(b) Magnetostatic magnetic-field flow lines for the same hole
subject to an external parallel field Hext and leading to a
magnetic dipole m � �MHext. (c) Summary of polarizabilities
for square and circular holes in PCSs, normalized using the hole
area A. The circular hole in a perfect-conductor thin screen is
analytical [15,16], but the right-hand side of Eq. (8) must be
corrected by a factor of 4 in this case due to cooperative
interaction between both sides of the film.
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FIG. 1 (color online). (a) Modulus of the specular reflection
coefficient jrpj of a perfect-conductor surface perforated by
infinitely deep square holes (see inset for parameters) as a
function of wavelength � and momentum parallel to the surface
kk. The surface mode predicted in Ref. [2] is shown by a dashed
curve. (b) Detail of the reflection coefficient rp along the AB
segment of (a).
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terial introduces a new structure in the high-frequency
region and bends the dispersion relation at the boundary
of the first Brillouin zone. Closer inspection into the long-
wavelength region reveals a sizable correction in the posi-
tion of the resonance towards smaller values of kk
[Fig. 1(b)], quantified in a factor of 3 larger decay length
of the surface state into the vacuum. The physical origin of
this discrepancy can be understood within the analytical
approach that follows, corroborated by full numerical so-
lution of Maxwell’s equations.

Small holes (a� d; �) can be represented by effective
dipoles, as shown by Bethe [16] for a single hole in a thin
perfect-conductor screen, where the scattered field is
equivalent to that generated by an electric dipole perpen-
dicular to the surface plus a parallel magnetic dipole,
which are in turn proportional to the external perpendicular
electric field and parallel magnetic field via the polariz-
abilities �E and �M, respectively. Parallel electric dipoles
and perpendicular magnetic dipoles are forbidden by the
23390
condition that the parallel electric field and the perpen-
dicular magnetic field vanish at a PCS. A single deep hole
in a semi-infinite PCS can be described in the same fash-
ion. In the long-wavelength limit, �E (�M) can be obtained
from the electrostatic (magnetostatic) far field induced by
an external electric (magnetic) field, as shown in Figs. 2(a)
and 2(b), whose calculation involves only TM modes (TE
modes) of the hole cavity. We have done this for a single
square hole using the noted plane-wave expansion for
arrays of holes sufficiently spaced as to neglect their mu-
tual interaction. (We have double-checked our numerical
results by independently solving the isolated hole prob-
lem.) The single circular hole has also been contemplated
in Fig. 2(c), solved by using a circular wave expansion.

Now, we consider a unit p-polarized plane wave with
wave vector in the xz plane (no surface modes are obtained
for s polarization). The material will be contained in the
z < 0 region. In the absence of any surface structure, the
total (incident plus reflected) field reads

Eext�r� �
2

k
�ikz sin�kzz�x̂� kk cos�kzz�ẑ�eikkx;

Hext�r� � 2 cos�kzz�ŷeik:
(3)

The actual self-consistent field acting on each hole in-
cludes contributions from interhole dynamical interaction.
Symmetry considerations show that the magnetic and elec-
tric dipoles describing the holes must be oriented as m �
mŷ and p � pẑ. Actually, m and p depend on hole posi-
tions R � �x; y� just through phase factors exp�ikkx�. This
1-2
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FIG. 3 (color online). (a) Real part of the dipole-dipole inter-
action sums for a square lattice of period d [Eq. (5) for kk * k].
(b) Electric (solid curve) and magnetic (dashed curve) polar-
izabilities of single circular holes filled with �h � 10 material as
a function of hole size. (c) Same as (b) for dimples.
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permits writing the self-consistent relations [5]

p � �E�Eext
z �GEE

zz p�GEM
zy m�;

m � �M�H
ext
y �G

MM
yy m�G

ME
yz p�;

(4)

whereG��0
ij gives the i component of the electric (� � E) or

magnetic (� � M) field induced at the position of a central
hole by the j component of the electric (�0 � E) or mag-
netic (�0 � M) dipoles of the rest of the holes. This co-
efficients satisfy the symmetry relations GEE

ij � GMM
ij and

GEM
ij � �G

ME
ij � �G

EM
ji , where i and j denote y or z

Cartesian components, and they are defined as sums over
hole lattice sites R. More precisely,

GEE
ij �

X
R�0

e�ikkxe�k2 � @i@j�
eikR

R
;

GEM
yz � �ik

X
R�0

e�ikkx@x
eikR

R
:

(5)

This interhole interaction is generally small for a� d,
except when a diffraction order goes grazing, in which case
the above sums can diverge giving rise to phenomena
related to Wood’s anomalies [17]. It is near these diver-
gences that surface-bound modes can exist, subject to the
condition

���1
E �G

EE
zz ����1

M �G
EE
yy � � �GEM

yz �
2; (6)

which guarantees the existence of nonvanishing solutions
of Eq. (4) in the absence of external fields. In particular,
near the light line in the kk � k plane for kk > k, one has

Re fGEE
zz g 	 RefGEE

yy g 	 RefGEM
yz g 	

2�ik2

kzd2 
 S; (7)

which comes from the divergent terms of Eq. (5) when
they are recast as sums over reciprocal space [see
Fig. 3(a)]. Furthermore, upon inspection, one finds that
ImfGEM

yz g � 0, and the remaining imaginary parts of all
quantities in Eq. (6) cancel out exactly since ImfGEE

jj g �

Imf��1
� g � �2k3=3 (this exact formula follows from in-

stantaneous flux conservation for kk > k). Combining
these results, Eq. (6) can be approximated by Eq. (2) with

� �
4�2

A3

�
1

Ref��1
E g
�

1

Ref��1
M g

�
2
: (8)

Equation (8) is exact in the a� d� � limit, and it
predicts the existence of surface-bound modes under the
condition 1=Ref��1

E g � 1=Ref��1
M g> 0. Calculated values

of � are offered in Fig. 2(c) for various hole geometries.
The position of the surface mode calculated from Eq. (8)
[see Fig. 1(b)] differs slightly from the exact numerical
result, mainly due to neighboring-holes multipolar inter-
action for a � 0:8d (the holes occupy 64% of the surface).

Interestingly, circular and square holes of the same area
give rise to similar values of �. This parameter increases by
an order of magnitude when the holes are made on thin
23390
screens, as compared to deep holes [last column in
Fig. 2(c)], giving rise to surface modes that are farther
apart from the light line due to cooperative interaction
between both sides of the film.

This description in terms of effective dipoles permits
writing the specular reflection coefficient for p-polarized
light as rp � 1� S�m� pkk=k�. It is easy to see that this
expression does not conform in general to the assumption
of local optical constants implicit in the derivation of
Eq. (1). In particular, for nongrazing incidence and ��
d, the dipole-dipole interaction can be neglected in Eq. (4),
so that using explicit expressions for the fields as provided
by Eq. (3), and noticing the rp deviates only slightly from
unity under these conditions, one finds, upon comparison
with Eq. (1),

��������������
�k=�k

q
	

2�ik

d2 ��M � �kk=k�2�E�; (9)

which depends on kk (i.e., on the angle of incidence) unless
�E � 0. Thus, the metamaterial is nonlocal in general, so
that the optical constants of an equivalent homogeneous
medium will depend on both frequency and momentum
(spatial dispersion). It should be noted that the neglect of
cavity modes other than the lowest-frequency one (TE1;0),
as assumed in Ref. [2], yields �E � 0 [see Fig. 2(c)], and
therefore it leads to an incomplete local-response descrip-
tion of the metamaterial.

From the point of view of external fields, the local-
response picture will be still maintained if j�Ej � j�Mj,
so that the second term on the right-hand side of Eq. (9) can
be overlooked. Such metamaterials can be achieved by
filling the holes with media of very high j�hj � 1 or
alternatively by using specific electrostatic resonances in
the �1< �h < 0 range (piling up towards �h � �1 as a
1-3
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manifestation of their filling-material surface-plasmon ori-
gin). This can make �E negligible in the long-wavelength
limit, as shown in Fig. 4. Optical phonons in alkali halides
yield �h 	 �1 with small absorption and can be combined
with noble metals (near-perfect conductors) to implement
these ideas in the THz domain.

Another possibility consists in filling dimples rather than
holes using moderate values of �h > 1 and �=d. Indeed, the
high-frequency propagating modes of infinitely deep holes
become resonances of finite width (due to coupling to the
external continuum) in holes of finite depth (dimples),
which are blueshifted with respect to the noted propagating
modes owing to reflection at the bottom and top ends of the
hole (Fabry-Perot picture), as illustrated by comparing
Figs. 3(b) and 3(c). For the choice of parameters of
Fig. 3(c), there is a resonance in �M near the lowest-
frequency cavity mode (� � 7:2a), where �E is compara-
tively negligible.

It should be noted that the surface modes resemble
surface plasmons not only in their limited penetration
into the vacuum, but also in the interaction that they
provide between additional surface features like holes of
larger dimensions. Indeed, the scattered field produced by
one of such features in the metamaterial decays away along
the surface as exp�ikkR�=

����
R
p

at large distance R. This has
the same form as the charge distribution accompanying a
surface plasmon launched by a localized source, in contrast
to the exp�ikR�=R far-field dependence of the interaction
on unstructured PCSs [flux conservation in 2D (3D) entails
the 1=

����
R
p

(1=R) dependence]. Furthermore, the far field of
a small, localized additional surface feature can be assimi-
lated to the field of an effective dipole placed at the surface
23390
of an equivalent homogeneous material with the same
reflectivity as the holey metamaterial. Interestingly, in
contrast to the dipoles that describe the underlying hole
structure, the new effective dipole can have parallel electric
and perpendicular magnetic components. This introduces
another handle in the design of surface states by using the
above holey metamaterials as the base fabric to build
metamaterials drilled by larger holes, allowing us to specu-
late on surface modes in fractal structures that imitate
Sierpinski’s carpet.

In conclusion, we have introduced a formalism to study
textured perfect-conductor surfaces that allows us to obtain
quasianalytical long-wavelength exact dispersion relations
for surface-bound modes. We have found that these meta-
materials cannot be assimilated in general to equivalent
effective homogeneous media described by local optical
constants, except in some limiting cases (e.g., by filling the
holes with high index of refraction material). Finally, our
results pave the way towards simple analysis of new meta-
material designs based upon the coexistence of different
hole sizes and hole distributions that can realize the goal of
achieving on-demand tailored surface dispersion relations.
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