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Relativistic Correction to the Helium Dimer Interaction Energy
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The lowest-order relativistic correction to the helium-helium interaction energy has been calculated for
the first time, using two independent methods based on expansions in explicitly correlated Gaussian
functions. At the equilibrium interatomic distance of 5.6 bohr, this correction amounts to �15:4�
0:6 mK. As a by-product, a new upper bound of �10:9985 K for the nonrelativistic Born-Oppenheimer
interaction energy has been obtained.
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One of the most thoroughly studied interactions is that
involving two helium atoms, due to its role as a model of
weak interactions and due to the ubiquitous presence of
helium in physical and technological applications. Helium
exhibits superfluidity and helium nanodroplets provide a
medium for a fast developing branch of high-resolution
spectroscopy [1,2]. Since the depth of the interaction po-
tential is only about 11 K, it can accommodate just one
vibrational level. The bound state of 4He2 was detected
experimentally in 1993 [3]. According to recent measure-
ments, the dissociation energy has an extremely small
value of about 1 mK and the mean internuclear distance
is as large as 50 Å [4]. The fact that the vibrational wave
function is diffused over very large distances makes it
sensitive to the details of the potential. Also, new
helium-based standards of temperature and pressure that
were proposed [5] depend critically on the accuracy of
ab initio potentials: an accuracy of the order of 1 mK is
needed, which translates to 90 ppm of the interaction
energy or just 0.5 ppb of the total dimer energy.

About ten years ago, the accuracy of the ab initio helium
dimer potentials surpassed that of potentials derived from
experimental data. The most recent value [6] of the poten-
tial well depth at the nonrelativistic Born-Oppenheimer
(BO) level amounts to �11:009� 0:008 K (1 hartree �
315 774:65 K). The near-millikelvin accuracy reached
means that various more advanced physical effects, not
accounted for in typical electronic structure calculations,
can no longer be neglected. The diagonal adiabatic correc-
tion of�0:013 K (for 4He2) was calculated from explicitly
correlated Gaussian (ECG) wave functions [7]. On the
other hand, virtually no information (not even the sign)
on the relativistic effect has been available. The difficulty
stems from the fact that the relativistic contribution to the
interaction energy is so small that the dimer and monomer
energies have to be computed with at least 5 significant
digits. Currently, the only possibility to achieve such a high
accuracy is to use large expansions of explicitly correlated
wave functions in association with special techniques to
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accelerate the convergence of the singular relativistic
operators.

The variational BO wave functions have been chosen in
the ECG form
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where ÔN
as is the N-electron antisymmetrizer, �N;S;MS is

one of the N-electron spin functions corresponding to spin
quantum numbers S andMS, P̂ is the point group symmetry
projector, and ck are variational parameters. For the singlet
ground state of the helium dimer,

�4;0;0 � ���1���2� � ��1���2�����3���4� � ��3���4��

(2)

and P̂ � 1
2 �1� �̂�, where �̂ is the inversion through the

geometrical center. In Eq. (1), �0 	 0, except in the
‘‘monomer contraction’’ scheme, described later, and
�k�1; 2; . . . ; N� denotes N-electron ECG functions
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where �ki, �kij, and Aki are nonlinear variational parame-
ters. The functions defined by Eqs. (1) and (3) have been
used with much success for a number of two-, three-, and
four-electron systems [see Ref. [8] and references therein].
Note that in the case of N � 2, the ECG functions of
Eq. (3) are commonly called Gaussian-type geminals
(GTG). All the nonlinear parameters contained in �k are
randomly generated and then carefully optimized with
respect to the nonrelativistic BO energy of the dimer, E0

[see Ref. [9] for details of the optimization algorithm]. The
linear parameters ck are found by solving the usual system
of secular equations in each call to the energy calculation
routine.
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The lowest-order relativistic correction to the energy,
E2, can be calculated as the expectation value of the Breit-
Pauli Hamiltonian [10], which, for singlet states of a four-
electron system, takes the following form:

Ĥ BP � c�2�Ĥ1 � Ĥ2 � D̂1 � D̂2�; (4)

where
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In the above, c � 137:03600 a:u: is the speed of light, pi is
the momentum operator of electron i, rij � ri � rj, ZA is
the charge of nucleus A located at the pointA, and � is the
Dirac delta function. For the interaction expectation values
we will use notation: �X � Xdimer � 2Xmonomer. In all the
calculations, the equilibrium internuclear distance of
5.6 bohr was assumed.

To obtain reliable error estimates, we used two different
methods of computation, which we will refer to as integral
transform (IT) and monomer contraction (MC). The inte-
gral transform method was recently introduced by three of
us [11] as a remedy for the notorious problem of the very
slow convergence of expectation values of relativistic op-
erators computed using Gaussian basis sets. The idea is to
transform the integrals with singular operators to a form
allowing the singular parts to be integrated using exact
asymptotic formulas. For example, the h��r�i expectation
value, after using the Poisson equation and the Laplace
transform of 1=r, can be expressed as

h�j��r�j�i �
1

2�3=2

Z 1
0
h�j2t2�3� 2t2r2�e�t

2r2
j�idt:

(9)

The expectation value on the right-hand side, f�t�, con-
TABLE I. Convergence of interaction energy c
using conventional approach.

M �E0 c�2�H1 c�2�H

300 �9:5279 1.5265 0.0135
600 �10:7560 0.6797 0.0138

1200 �10:9582 0.3278 0.0138
2400 �10:9900 0.2819 0.0138
4800 �10:9953 0.2232 0.0138
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verges quickly with increasing size of the expansion of �,
except for large values of t. In the latter region, an asymp-
totic formula resulting from the Kato cusp condition ful-
filled by the exact wave function is used instead to evaluate
f�t�. An analogous expression can also be derived [11] for
the hp4

i i expectation value.
We first performed calculations without applying the IT

technique. Table I contains the values of the nonrelativistic
and relativistic components of the interaction energy, ob-
tained in all the cases by subtracting the (virtually exact)
literature values for the helium atom [12]. Note that be-
cause no unambiguous relation between the floating-center
4-electron dimer and atom-centered 2-electron monomer
ECG functions can be formulated (in contrast to the tradi-
tional orbital basis functions), it is not possible to use the
counterpoise corrected approach, i.e., to perform calcula-
tions for both the dimer and the monomer in the same basis
set. The values of �E0 represent strict upper bounds to the
exact nonrelativistic interaction energy. The lowest one,
�10:9953 K, is significantly more accurate than the best
previously published variational result, �10:981 K [13],
but still too small in magnitude to fit within the error bars
established in Ref. [6]: �11:009� 0:008 K. The conver-
gence of the relativistic properties, calculated directly from
Eqs. (5)–(8), is poor (with the exception of c�2�H2).
However, due to large cancellations between the c�2�H1

and c�2�D1 contributions, the value of �E2 converges
reasonably fast.

Table II presents the results for the ‘‘difficult’’ relativis-
tic contributions obtained with the IT regularization pro-
cedure. Comparison with Table I shows that the
regularization results in a dramatic improvement of the
accuracy, yielding values converged to about 0.1 mK in
all the three cases (judging from the rate of convergence).
Whereas the final value of �E2 seems to be saturated to
better than 0.1 mK, the irregularities in the convergence
pattern of c�2�H1 and the fact that the optimization of our
4800-term expansion was not as extensive as in the case of
the shorter expansions demand some caution. We assume
that the difference between the complete basis set limit
value of �E2 and the M � 4800 result can be as much as
twice the difference between theM � 4800 andM � 2400
results and assign the same value to the uncertainty of the
estimated limit. Thus, our estimated exact value of �E2

from the IT calculations is �15:4� 0:2 mK.
omponents (in kelvins) with basis set size M

2 c�2�D1 c�2�D2 �E2

1 �1:4907 0.0554 0.1047
1 �0:6652 0.0225 0.0508
7 �0:3197 0.0114 0.0334
8 �0:2757 0.0070 0.0271
8 �0:2184 0.0049 0.0236
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TABLE II. Convergence of interaction energy components (in
kelvins) with basis set size M using IT regularization.

M c�2�H1 c�2�D1 c�2�D2 �E2
a

300 0.0067 �0:0508 0.0131 �0:0175
600 0.0071 �0:0134 0.0025 0.0100

1200 0.0070 �0:0070 0.0004 0.0143
2400 0.0073 �0:0060 �0:0001 0.0151
4800 0.0074 �0:0059 �0:0002 0:0152

aCalculated using c�2�H2 from Table I.
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The success of the IT method is due to the fact that in the
right-hand side of Eq. (9) (and its analogue for p4) the
expectation value of a global operator is calculated, rather
than of the highly singular ��r� operator. It should be noted
here that several other possibilities of applying global
properties to evaluate relativistic corrections exist [see
Ref. [11] for an example]. In many cases, the direct per-
turbation theory (DPT) [14,15] provides a method which
converges faster than the method using the Breit-Pauli
Hamiltonian (4). However, the two-electron �D2 term,
the most slowly convergent contribution in our calcula-
tions, is the same in both methods, so that the use of DPT
would not help.

The idea of the second approach, the monomer contrac-
tion method, is based on the fact that, because of the very
small value of the interaction energy, the wave function of
the helium dimer is not very different from the product of
the wave functions of the noninteracting monomers. It is
logical, therefore, to include such a product—which can
be constructed with a high accuracy—as a frozen part of a
dimer function and optimize only the remaining part. Thus,
taking a high-quality helium atom ECG function

�He � Ô2
as

�
���1���2� � ��1���2��

XL
l�1

dl�l�1; 2�
�
; (10)

we define the function �0 in Eq. (1) as

�0 �
XL
l�1

XL
m�l

dldm�
A
l �1; 2��

B
m�3; 4�; (11)

where the functions �X
l �i; j� have the form of Eq. (3), with

the centers Aki restricted to the location of nucleus A or B.
The �L2 � L�=2 four-electron terms resulting from
Eq. (11) have the same form of Eq. (3) as the remaining
TABLE III. Expectation values of He calculate
atomic units). E00 � ��E0 � 2:903 724� 
 1010.

L E00 hH1i

141 37109 �13:512 142 �0
283 37690 �13:519 197 �0

Exact 37703 �13:522 017 �0

23300
M terms, but the part denoted by �0 is treated as a con-
traction with one common linear coefficient, c0, and does
not undergo any optimization with respect to the dimer
energy.

As the atomic function of Eq. (10), we used a carefully
optimized 283-term expansion yielding the nonrelativistic
energy of the two monomers with an error of only 0.08 mK.
Longer ECG expansions for the helium atom can easily be
obtained but their use in our MC scheme would be prob-
lematic due to prohibitive cost and accumulation of nu-
merical errors resulting from the very large number of the
product terms of Eq. (11). A 141-term expansion was used
as a check (the L � 141 contraction was added to M terms
optimized in the presence of the L � 283 contraction). The
relevant helium atom expectation values calculated with
these two functions are listed in Table III and compared
with the exact values from Ref. [12].

Using the MC procedure, we generated several ECG
expansions up to M � 1200. The inclusion of the mono-
mer product results in a much faster convergence of �E0

and the �L � 283;M � 1200� function yields a value of
�10:9985 K, significantly lower than the regular 4800-
term ECG expansion. If the exact helium atom values
from Ref. [12] are subtracted to get the relativistic contri-
butions, the results are very poor and �E2 appears to
converge to 0.020 K (for L � 283) or 0.034 K (for L �
141). However, with the MC wave functions, we do not
have to subtract the exact atomic values. Let us briefly
analyze such functions. Since the error of E0 for two
helium atoms described by the 283-term expansions is 5
orders of magnitude smaller than �E0, the minimization of
E0 for the dimer is (in the range of M used by us) directed
entirely towards optimizing the interaction part. Thus, the
atomic components remain unchanged in the dimer wave
function and, consequently, the monomer contributions in
E2 are at the level of the L-term monomer expansion.
Therefore, in this case it is completely adequate to subtract
the monomer properties calculated with the function used
to build the contraction instead of the exact values. This
claim is confirmed by the results in Table IV, which practi-
cally do not depend on the value of L. The best values of
c�2�D1 and c�2�D2 are in excellent agreement with the
IT predictions. The values of c�2�H1, however, seem to
converge here to a slightly higher limit, which is consistent
with the irregularities noted in Table II. Since the conver-
gence of �E2 is not as regular as in the IT calculations, we
did not attempt to extrapolate the MC results. However, the
d from the L-term atomic wave functions (in

hH2i hD1i hD2i

:13 909 510 11.365 569 0.334 443
:13 909 473 11.372 486 0.334 173
:13 909 469 11.375 263 0.334 094
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TABLE IV. Convergence of interaction energy components (in
kelvins) with basis set size M. L denotes the number of terms in
the monomer expansion; see Eqs. (10) and (11). The values of
�E2 in the last column assume c�2�H2 � 0:01388 K. The
results are obtained by subtracting the helium atom expectation
values computed for the monomer (with L terms) from those
computed for the dimer.

M �E0 c�2�H1 c�2�D1 c�2�D2 �E2

L � 141

0 10.5789 �0:0159 0.0135 0.0011 0.0126
128 �10:8296 0.0031 �0:0036 �0:0002 0.0132
300 �10:9675 0.0072 �0:0056 �0:0002 0.0153
600 �10:9911 0.0073 �0:0056 �0:0002 0.0154

1200 �10:9986 0.0078 �0:0058 �0:0002 0.0157

L � 283

0 10.5790 �0:0159 0.0135 0.0011 0.0125
128 �10:8295 0.0031 �0:0036 �0:0002 0.0132
300 �10:9675 0.0070 �0:0056 �0:0002 0.0152
600 �10:9911 0.0074 �0:0057 �0:0002 0.0154

1200 �10:9985 0.0078 �0:0058 �0:0002 0.0156
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MC results may indicate that the basis set limit of �E2 is
somewhat larger than the prediction from the IT method,
perhaps as large as 0.0160 K (the L � 283, M � 1200
result plus twice the difference between the M � 1200
and 600 values). Therefore, we have enlarged the error
bars established for the IT result to encompass this value.
Thus, our final recommended value of �E2 is �15:4�
0:6 mK. �E2 is strongly dominated by the Breit term of
Eq. (6), as the one-electron terms cancel each other to a
large extent and the effect of the two-electron � term is
negligible.

Obviously, the most accurate method would be the
combination of both our approaches, i.e., calculating all
the expectation values with the ECG functions containing
monomer contractions, using the regularized IT expres-
sions. However, this solution is currently too expensive
because the IT scheme involves time-consuming numerical
integration of the function f�t� in Eq. (9).

Our values of the nonrelativistic BO interaction energy
in Tables I and IV seem to converge to a value slightly
below �11:000 K, which agrees with our recent result of
�11:009� 0:008 K [6] and yields another confirmation of
the fact that few-millikelvin accuracy has been reached for
this quantity. Thus, our present calculation of the relativ-
istic correction removes the largest current source of un-
certainty in the helium dimer interaction energy. The only
unknown contribution which can be relevant is that of the
quantum electrodynamics. Judging from the fact that the
QED correction to the helium atom polarizability is
23300
22 ppm [16] whereas the analogous relativistic correction
is�58 ppm [17,18], one can expect the QED effect on the
interaction energy to be also smaller than the relativistic
effect. Nevertheless, it is probably not negligible and its
accurate calculation seems desirable.
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