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We perform a relativistic chiral effective-field theory calculation of pion electroproduction off the
nucleon (e�N ! e�N�) in the ��1232�-resonance region. After fixing the three low-energy constants,
corresponding to the magnetic (M1), electric (E2), and Coulomb (C2) �N� couplings, our calculation
provides a prediction for the momentum transfer and pion-mass dependence of the �N� form factors. The
prediction for the pion-mass dependence resolves the discrepancy between the recent lattice QCD results
and the experimental value for the ‘‘C2=M1 ratio’’ at low Q2.
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The ��1232� resonance, the first excited state of the
nucleon, dominates many nuclear phenomena at energies
between the one- and two-pion production thresholds. The
electromagnetic excitation of the � resonance, the �N�
transition, has recently received a lot of attention. At low
momentum transfer (Q2) it highlights the role of the pion
cloud [1–7], whereas at larger Q2 it probes the onset of the
perturbative QCD regime [8,9].

The �N� transition is predominantly of the magnetic
dipole �M1� type which, in a simple quark-model picture,
is described by a spin flip of a quark in the s-wave state.
Any d-wave admixture in the nucleon or the � wave
functions allows for the electric �E2� and Coulomb �C2�
quadrupole transitions. Therefore, by measuring these, one
is able to assess the presence of the d-wave components
and hence quantify to which extent the nucleon or the �
wave function deviates from the spherical shape (‘‘hadron
deformation’’) [10].

The �N� transition has been accurately measured in the
pion photo- and electroproduction reactions [1–3,9]. The
E2 and C2 are found to be relatively small—the ratios
REM � E2=M1 and RSM � C2=M1 are at the level of a
few percent. On the theoretical side, the most recent state-
of-the-art lattice QCD study [11] obtained a puzzling
result: the computed ratio RSM at low momentum transfer
appears to be significantly different from the observed
value. It is important to note that the lattice calculations
were done at larger pion masses, while the result compared
with experiment was obtained by a linear extrapolation to
the physical pion mass.

In this Letter we present a first chiral effective-field
theory (�EFT) calculation of pion photo- and electropro-
duction on the nucleon in the �-resonance region. Besides
finding good agreement of our calculation with observ-
ables, we are able to study the chiral behavior (m� depen-
dence) of the �N� transition. Our results show that there is
no apparent discrepancy between the lattice data [11] and
the experimental result for RSM.

Our starting point is the relativistic chiral Lagrangian of
pion and nucleon fields [12] supplemented with the rela-
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tivistic �-isobar fields [13]. We organize the Lagrangian
L�i�, such that superscript i stands for the power of elec-
tromagnetic coupling e plus the number of derivatives of
pion and photon fields. Writing here only the relevant
terms involving the spin-3=2 isospin-3=2 field  � of the
� isobar, we have (with antisymmetric products of �
matrices: ��� � 1

2 ��
�; ���, ���� � i"�������5)
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where M ’ 0:939 and M� ’ 1:232 GeV are, respectively,
the nucleon and �-isobar masses, N and �a�a � 1; 2; 3�
stand for the nucleon and pion fields, D� is the covariant
derivative ensuring the electromagnetic gauge-invariance,
F�� and ~F�� are the electromagnetic field strength and its
dual, Ta are the isospin 1=2 to 3=2 transition matrices, and
f� ’ 92:4 MeV is the pion decay constant. L�1�� contains
the Rarita-Schwinger Lagrangian [14] of a free spin-3=2
field formulated such that the number of spin degrees of
freedom is constrained to the physical number. The cou-
plings in Eq. (1) are consistent with these constraints
because of a spin-3=2 gauge symmetry [15].

We next turn to the power counting for the pion electro-
production amplitude using the ‘‘	-expansion’’ scheme
[13]. In this scheme the excitation energy of the � reso-
nance, namely, � � M� �M ’ 0:3 GeV, is treated as a
light scale, so that for �	 1 GeV representing the heavy
scales in the theory, we can use a small parameter
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	 � �=�. The other typical light scale of the theory, the
pion mass, is counted as two powers of the small parame-
ter: m�=�	 	2. The latter rule is the main distinction of
this scheme from the previous power countings [16,17]
which count � and m� at the same order. This difference
plays a crucial role in separating the low-energy and reso-
nance regimes, as well as in approaching the chiral limit
where m� vanishes while � remains finite. Because of the
distinction of m� and �, the counting of a given diagram
depends on whether the characteristic momentum p is in
the low-energy region (p	m�) or in the resonance region
(p	 �). In the resonance region, one distinguishes the
one-�-reducible (O�R) graphs [13]; see, e.g., graph (a)
in Fig. 1. Such graphs contain � propagators which go as
1=�p� �� and hence for p	 � they are large and all need
to be included. Their resummation amounts to dressing the
� propagators so that they behave as 1=�p� �� ��. The
self-energy � begins at order p3, and thus a dressed O�R
propagator counts as 1=	3.

The pion electroproduction amplitude to next-to-leading
order (NLO) in the 	 expansion, in the resonance region, is
thus given by the graphs in Figs. 1(a) and 1(b) where the
shaded blobs in graph (a) include corrections depicted in
Figs. 1(c)–1(f). The hadronic part of graph (a) begins at
O�	0�, which here is the leading order. The Born graphs
[Fig. 1(b)] contribute at O�	�. We note that at NLO there
are also vertex corrections of the type (e) and (f) with
nucleon propagators in the loop replaced by the � propa-
gators. However, adopting the on-mass shell renormaliza-
tions and Q2 
 ��, these graphs start to contribute at
next-to-next-to-leading order (NNLO).

We have not shown the �N�-vertex correction graph
where the photon couples into the �NN vertex, because at
this order the effect of this graph can be fully absorbed in
the graphs in Figs. 1(e) and 1(f) by a field redefinition
relating the pseudovector and pseudoscalar �NN cou-
plings. Having done that, we compute graphs in
Figs. 1(e) and 1(f) using the pseudoscalar coupling.

The self-energy correction [Fig. 1(c)] was computed
previously [18]. In that calculation, the experimental value
for the �-resonance width fixes hA ’ 2:85. To present the
results for the vertex corrections, we first consider the
general form of the �N� vertex:
(a) (b)

(c)

ρ

(d) (e) (f)

FIG. 1. Diagrams for the eN ! e�N reaction at NLO in the 	
expansion, considered in this work. Double lines represent the �
propagators. The crossed nucleon-exchange graph is not shown
in (b) but is included in the calculation.
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where u� is the � vector spinor, u is the nucleon spinor,
q � p0 � p is the photon four-momentum,Q2 � �q2, and
gM, gE, and gC are the form factors which at Q2 � 0 are
equal to the physical values of corresponding parameters
from Lagrangian (1). These form factors relate to the
conventional magnetic (GM), electric (GE) and Coulomb
(GC) form factors of Jones and Scadron [19] as follows:
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2 � �Q2�, with r � M=M�. The ratios
E2=M1 and C2=M1 at the resonance position can be ex-
pressed in terms of these form factors as
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The one-loop corrections to the �N� form factors are
given by the graphs in Figs. 1(e) and 1(f). For example, the
[modified minimal subtraction scheme (MS)] result for the
graph (e) in Fig. 1 can be cast in the form
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where M2 � �x� ��2 � �2 � 2��xy� �Q2y�1� y� �
i", � � m�=M�, � � 1

2 �1� r
2 ��2�, �2 � �2 ��2,

CN� � 4gAhAQ
2
�r
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2�, and gA ’ 1:26.

Analogous expressions are obtained for the graph in
Fig. 1(f). Alternatively, we have computed these graphs
by using the sideways dispersion relations (see, e.g., [20])
and obtained identical results.

The vector-meson diagram [Fig. 1(d)] contributes to
NLO for Q2 	��. We include it effectively by giving
the gM term a dipole Q2 dependence (in analogy to how it
1-2
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is usually done for the nucleon isovector form factor):
gM ! gM�1�Q

2=0:71 GeV2��2. An analogous effect
for the gE and gC couplings begins at NNLO and is not
included in the present calculation.

We now present the electroproduction observables cor-
responding to the NLO amplitude of Fig. 1. Denoting the
invariant mass of the final �N system by s, we restrict
ourselves to the resonance kinematics: s � M2

�. The
�N ! �N cross section for unpolarized nucleons are
expressed in terms of 5 response functions as
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where �� and � are the pion polar and azimuthal c.m.
angles, respectively, and h denotes the electron helicity.

In Fig. 2 we show our �EFT results for the different
cross sections entering Eq. (6). The only free parameters in
this calculation are the low-energy constants from Eq. (1),
which were chosen to yield the best description of the data
as gM � 2:88, gE � �1:04, and gC � �2:36. Within
�EFT, we can estimate the theoretical uncertainty of the
NLO result due to higher-order effects. The NNLO cor-
rections to the amplitudes are expected to be of the order of
	2, m�=�, or Q2=�2. Therefore, the theoretical uncer-
tainty Rerr of an observable R, which involves a product
of two amplitudes, is estimated as (here taking � � M):

Rerr � 2jRavj
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where Rav is an average value of R. In Fig. 2 the average is
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FIG. 2 (color online). �EFT NLO results for the �� depen-
dence of the �p! �0p cross sections at

���
s
p
� 1:232 GeV and

Q2 � 0:127 GeV2. The theoretical error bands are described in
the text. Data points are from BATES experiments [3,24].
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taken over the range of ��. One sees that the NLO �EFT
calculation, within its accuracy, is consistent with the
experimental data for these observables.

In Fig. 3 we show the Q2 dependence of the ratios REM
and RSM. Having fixed the low-energy constants gM, gE,
and gC, the Q2 dependence follows as a prediction. The
theoretical uncertainty here (shown by the error bands) is
estimated according to Eq. (7) with the average Rav taken
over the range of Q2 from 0 to 0:2 GeV2. From the figure,
one sees that the NLO calculations are consistent with the
experimental data for both of the ratios.

In Fig. 4 we show the m� dependence of the �N�
transition ratios, with the theoretical uncertainty estimated
according to Eq. (7) where Rav is taken over the range of
m2
� from 0 to 0:15 GeV2. The study of the m� dependence

is crucial to connect to the lattice QCD results, which at
present can be obtained only for larger pion masses. The
recent state-of-the-art lattice calculations of these ratios
[11] use a linear, in the quark mass (mq / m2

�), extrapo-
lation to the physical point, thus assuming that the non-
analyticmq dependencies are negligible. The thus obtained
value for RSM at the physical m� value displays a large
discrepancy with the experimental result, as seen in Fig. 4.
However, our calculation demonstrates that the nonana-
lytic dependencies are not negligible. While at larger val-
ues of m�, where the � is stable, the ratios display a
smooth m� dependence, at m� � � there is an inflection
point, and for m� � � the nonanalytic effects are crucial,
as was also observed for the �-resonance magnetic mo-
ment [18,21]. The m� dependence obtained in �EFT
clearly shows that the lattice results for RSM may in fact
be consistent with experiment.
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FIG. 3 (color online). Q2 dependence of the NLO results for
REM (upper panel) and RSM (lower panel). The blue circles are
data points from MAMI for REM [1] and RSM [25,26]. The green
squares are data points from BATES [3].
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FIG. 4 (color online). m� dependence of the NLO results at
Q2 � 0:1 GeV2 for REM (upper panel) and RSM (lower panel).
The blue circle is a data point from MAMI [25]; the green
squares are data points from BATES [3]. The solid black
diamonds are lattice calculations [11], whereas the dashed lines
and open diamonds represent their extrapolation assuming linear
dependence in m2

�.

PRL 95, 232001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005
Note that them� dependence of � andN masses was not
taken into account in this work. However, we expect this
effect to play a minor role in the ratios. In particular, it will
not alter the threshold position, m� � �, because the
�-nucleon mass splitting stays nearly constant as m� in-
creases, as lattice calculations indicate [22].

In conclusion, we have performed a manifestly gauge-
and Lorentz-invariant �EFT calculation of the eN ! eN�
reaction in the ��1232�-resonance region. To NLO in the 	
expansion, the only free parameters entering the calcula-
tion are the �N� couplings gM, gE, and gC, characterizing
the M1, E2, and C2 transitions. Our results agree well with
recent high-precision data from MAMI and MIT-BATES at
low Q2. The �EFT framework plays a dual role, in that it
allows for an extraction of resonance parameters from
observables and predicts their m� dependence. In this
way it may provide a crucial connection of present lattice
QCD results obtained at unphysical values of m� to the
experiment. We have found that the opening of the �!
�N decay channel at m� � M� �M induces a pro-
nounced nonanalytic behavior of the REM and RSM ratios.
While the linearly extrapolated lattice QCD results for RSM
are in disagreement with experimental data, the �EFT
prediction of the nonanalytic dependencies has allowed
us to reconcile these results with experiment. As the
next-generation lattice calculations of these quantities are
on the way [23], the �EFT framework presented here will,
hopefully, complement these efforts.
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