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We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of
Kerr–anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily
be determined. The result is independent of the rotation parameters, and the total boundary energy then
straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal
boundary will give different, more complicated, results. As an application, we calculate the Casimir
energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-
dimensional supergravity dual. They differ by a factor of 5=4.
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An interesting application of the anti-de Sitter/confor-
mal field theory (AdS/CFT) correspondence [1–3] is to
consider for the bulk solution a rotating Kerr–anti-de Sitter
spacetime. As was discussed in Ref. [4], the boundary
theory in this case should describe a conformal field theory
in a rotating Einstein universe, allowing one, in principle,
to study the effects of rapid rotation on the thermodynam-
ics of the system. Of particular interest is the behavior of
the CFT on the boundary as the rotation parameters achieve
their maximal values consistent with the nonexistence of
closed timelike curves. The chronology protection conjec-
ture of Hawking [5] suggests that going beyond this limit
should be physically impossible. This may be associated
with a divergence of the free energy of the CFT as one
approaches the limit and with a possible nonunitarity of the
CFT if one passes beyond it.

The study of the thermodynamics of such rotating sys-
tems is quite involved and subtle, both in the bulk and in
the passage to the boundary theory. In the bulk, there are
subtleties concerning the definition of the energy, or mass,
of the rotating AdS black hole. As we showed in Ref. [6], it
is important that one evaluate the energy and the angular
velocities with respect to a frame that is asymptotically
nonrotating at infinity, in order to obtain quantities that
satisfy the first law of thermodynamics,

dE � TdS��idJi: (1)

In particular, a commonly considered frame that rotates
relative to the asymptotically static frame, and which arose
when the Kerr–AdS metrics were first constructed in
Boyer-Lindquist type coordinates, is particularly inappro-
priate for defining the energy and angular velocities, since
its asymptotic rotation rate is dependent on the angular-
momentum parameters of the metric [7].

In Ref. [7], we addressed the question of how one should
map between the bulk thermodynamic variables and the
corresponding variables on the boundary. We showed that,
using the standard UV/IR connection, the bulk variables
�E; T; S;�i; Ji� that satisfy the first law as in (1) map
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straightforwardly into boundary variables �E; T; S; !i; ji�
that also satisfy the first law, now with the addition of a
pressure term,

de � tds�!idji � pdv: (2)

This mapping is implemented, for an n-dimensional bulk
spacetime, by imposing the relations
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l
y
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l
y
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l
y
T; s � S;

ji � Ji; v �An�2yn�2; p �
e

�n� 2�v
:

(3)

Here l is the radius of the asymptotically AdS spacetime, in
the sense that R�� � ��n� 1�l2g��, An�2 is the volume
of the unit �n� 2� sphere, and y is the radius of a large
sphere, with round spherical metric, near the boundary in
AdS. As we emphasized in Ref. [7], the natural choice of
boundary metric is that of the Einstein static universe,
ESUn�1, i.e., the standard product metric on R� Sn�2.
In other words, one introduces a set of coordinates in which
the Kerr–AdS metric approaches the canonical AdSn met-
ric at infinity, in the form

d �s2
n � ��1� y2l�2�dt2 �

dy2

1� y2l�2 � y
2d�2

n�2; (4)

where d�2
n�2 is the metric on the unit �n� 2� sphere. The

conformal boundary is then located at y! 1, and the
induced metric has the standard ESUn�1 form

d �s2
n�1 � �dt

2 � l2d�2
n�2: (5)

More precisely, in an AdS-type conformal compactifica-
tion, the physical metric is given by g � ��2 ~g, where
� � 0 and d� � 0 on the timelike conformal boundary
I , with ~g being nonsingular in a neighborhood of I . The
metric induced on the boundary I is h � ~gjI and depends
on the choice of the conformal factor �. If �! f�, for
some function f which is nonvanishing in a neighborhood
of I , then the boundary metric undergoes a conformal
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rescaling h! f2h. In order to obtain the standard metric
on ESUn�1, one simply chooses � � l

y .
Our result in Ref. [7] refuted a recent surprising claim in

Ref. [8], where it was asserted that, in order to get thermo-
dynamic quantities that satisfied the first law on the bound-
ary, it was necessary to start from thermodynamic
quantities in the bulk that did not satisfy the first law (in
fact, the quantities defined relative to the rotating frame we
mentioned earlier). As we showed, the puzzling results in
Ref. [8] were associated with the use of a somewhat
unnatural conformal factor � and, hence, a complicated
boundary metric h whose spatial sections were not round
spheres and which was not ultrastatic; i.e., gtt depended on
spatial position.

In Ref. [7], our principal interest was in the properties
and thermodynamics of the bulk theories, and so it was not
relevant to consider the contribution of Casimir energies on
the boundary. Such terms do play an important rôle in the
boundary CFT, and much work has been done on calculat-
ing them. For the case of Schwarzschild-AdS spacetime,
the boundary Casimir contribution was evaluated in
Ref. [9]. Casimir calculations have also been performed
for the case of rotating Kerr–AdS black holes, in Ref. [10]
and, more recently, in Ref. [11]. The result obtained in
these papers for the four-dimensional boundary theory is

ECasimir �
3�2l2

4�2

�
1�
��a ��b�

2

9�a�b

�
; (6)

where �2=�8�� is Newton’s constant, �a � 1� a2l�2,
�b � 1� b2l�2, and a and b are the rotation parameters
of the five-dimensional Kerr–AdS black hole given in
Ref. [4].

The expression (6) for the Casimir energy of the bound-
ary is a somewhat surprising result, since it depends on the
rotation parameters a and b of the Kerr–AdS black hole.
As we have argued above, the most natural conformal
frame in which to formulate the boundary CFT is one in
which the metric approaches the form (4), and the bound-
ary metric is that of ESUn�1, and, since this metric is
manifestly independent of a and b, the Casimir energy
will necessarily also be independent of a and b.
Evidently, therefore, the conformal boundary metric
chosen in Refs. [10,11] is not the one we are advocating.
In the remainder of this Letter, we shall endeavour to
convince the reader that our proposed choice of conformal
boundary metric for the CFT dual to the Kerr–AdS metric
is by far the most natural one and that it has the very
satisfactory feature that it leads to a genuinely constant
Casimir energy in the boundary theory.

In fact, in order to demonstrate our point, we need only
collect a few results from previous papers. We shall discuss
mostly the general n-dimensional case, since it is just as
easy to discuss it generally as in any specific dimension.
The general Kerr–AdS metrics were obtained in
Refs. [12,13]. The metrics have N � ��n� 1�=2	 indepen-
23160
dent rotation parameters ai in N orthogonal 2-planes. We
have n � 2N � 1, when n is odd, and n � 2N � 2, when n
is even. The metrics can be described by introducing N
azimuthal angles �i and �N � �� ‘‘direction cosines’’ �i
obeying the constraint

XN��
i�1

�2
i � 1; (7)

where � � �n� 1� mod 2. In Boyer-Lindquist type coor-
dinates that are asymptotically nonrotating, the metrics are
given by [12,13]
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(9)

V � r��2�1� r2l�2�
YN
i�1

�r2 � a2
i �; (10)

and it is understood, in the even-dimensional case, that
aN�1 � 0. The metrics satisfy R�� � ��n� 1�l�2g��.
The constant-r spatial surfaces at large distance are inho-
mogeneously distorted �n� 2� spheres. Making the coor-
dinate transformations

�iy2�̂2
i � �r

2 � a2
i ��

2
i ; (11)

where
P
i�̂

2
i � 1, the metrics at large y approach the

standard AdS form given in (4), where

d�2
n�2 �

XN��
k�1

d�̂2
k �

XN
k�1

�̂2
kd’

2
k; (12)

with round �n� 2� spheres of volume An�2yn�2 at radius
y, where An�2 is the volume of the unit �n� 2� sphere.
Note, in particular, that the boundary metric does not
depend on any of the black-hole parameters.

The boundary CFT will be defined on the surface y �
constant at very large y. The Casimir energy in the bound-
ary theory is clearly independent of the mass m of the
Kerr–AdS black hole, since the boundary metric does not
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depend upon m. Therefore, for convenience, we can evalu-
ate it by first setting m � 0 in (8), which implies that the
metric becomes purely AdS itself, in an unusual coordinate
system. As was shown in Refs. [12,13], if one now per-
forms the coordinate transformation (11), the AdS metric
becomes exactly the canonical metric given in (4). The
calculation of the Casimir energy for the boundary of
Kerr–AdS is, therefore, reduced to the standard calculation
for the Einstein static universe, ESUn�1. The answer is
obviously independent of the rotation parameters, since
they do not appear in the boundary metric.

One may calculate the Casimir energy in a number of
ways. In Ref. [9], it was shown that the use of the holo-
graphic stress tensor for the conformal anomaly for four-
dimensional N � 4 super-Yang-Mills gives

ECasimir �
3�2l2

4�2 : (13)

This value agrees with a direct calculation of the Casimir
energy using zeta-function regularization of the sums over
energy eigenvalues for 6N2 scalar fields, 4N2 Weyl spinor
fields, and N2 vector fields on S3. For our choice of
conformal boundary metric, (13) is therefore the Casimir
energy in the four-dimensional boundary theory dual to the
five-dimensional Kerr–AdS metric. Combined with our
calculation of the bulk energy term obtained in Ref. [6],
the complete CFT energy is given by

Etot �
2�2m�2�a � 2�b ��a�b�

�2�2
a�2

b

�
3�2l2

4�2 : (14)

The calculations in any other dimension proceed simi-
larly, again yielding Casimir energies that are necessarily
independent of the black-hole rotation parameters. For
example, in the case of a seven-dimensional Kerr–AdS
bulk spacetime, we obtain a total boundary energy given by

Etot �
2m�3

�2�
Q
i �i�

�
1

�1
�

1

�2
�

1

�3
�

1

2

�
�

5�3l4

16�2 ; (15)

where the first term is the bulk energy that we calculated in
Ref. [6], and we have read off the Casimir term by setting
a � 0 in Eq. (51) of Ref. [10]. This value, which came
from the use of the holographic stress tensor, should be
compared with the value obtained directly by zeta-function
regularization of the sums over energy eigenvalues of 20N3

scalars, 8N3 Weyl fermions, and 4N3 self-dual 3-forms,
making up 4N3 copies [14] of the �2; 0� tensor multiplet.
Using the energies and degeneracies tabulated in Ref. [15],
we find that the Casimir energy for N0 scalars, N1=2 Weyl
fermions, and NT self-dual 3-forms is

ECasimir � �
�124N0 � 1835N1=2 � 11 460NT�

241 920l
: (16)

For a 4N3 multiplet, with the seven-dimensional AdS/CFT
relation N3 � 3�3l5=�2�2�, this gives
23160
ECasimir � �
25�3l4

64�2 : (17)

Clearly, this does not agree with the Casimir term in (15);
the ratio is in fact 5=4, which is not the same as the 4=7
ratio conjectured in Ref. [10]. Presumably, these differ-
ences reflect the absence of the nonrenormalization theo-
rems that appear to account for the agreement of the
various methods in the four-dimensional case.

We have demonstrated that, by choosing the conformal
boundary metric defined by taking y � constant, we obtain
a very simple framework for describing the thermodynam-
ics of the boundary field theory, with a very simple ex-
pression for the Casimir contribution to the energy, which
is independent of the parameters in the Kerr–AdS metric.
In particular, this means that the first law of thermodynam-
ics continues to hold in a straightforward manner, when the
Casimir energy is included. This contrasts with the more
complicated situation in the case of the conformal bound-
ary metric chosen in Refs. [10,11], where, as was shown in
Ref. [11], an additional diffeomorphism term must be
included in the first law in order to compensate for the
dependence of the boundary metric on the rotation parame-
ters of the black hole.

The Boyer-Lindquist form of the boundary metric (in
nonrotating coordinates) is obtained by taking the limit
r! 1 of �l2=r2�ds2, where ds2 is given by (8). This yields

ds2
n�1 � �Wdt

2 � l2
XN��
i�1

1

�i
d�2

i � l
2
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i�1

1

�i
�2
i d’

2
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�XN��
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�id�i

�i

�
2
: (18)

If we introduce new coordinates �̂i, satisfying
P
i�̂

2
i � 1,

by the transformations

�i �
�����������
W�i

q
�̂i; (19)

then the metric (18) becomes

ds2
n�1 � Wd�s2

n�1; (20)

where d �s2
n�1 is the standard metric on ESUn�1, given by

(5) and (12), with W expressed in terms of the �̂i as W �P
i�i�̂2

i . This is the generalization to arbitrary dimension
of the five-dimensional demonstration in Ref. [6] that the
r � constant ‘‘Boyer-Lindquist’’ boundary metric (18) and
the y � constant Einstein static universe boundary metric
(5) are related by a Weyl rescaling, and, thus, they lie in the
same conformal class. When considering the first law, one
varies the rotation parameters ai. If one uses the Boyer-
Lindquist boundary metric (18), this variation induces an
infinitesimal change of the conformal factor and, hence, a
change of the Casimir contribution to the energy, as de-
scribed in detail in five dimensions in Ref. [11] [see their
Eqs. (6.51)–(6.54)].
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We are not, of course, saying that the more complicated
results for the Casimir energies obtained in Refs. [10,11]
are wrong but, rather, that they are the consequence of
having made a less felicitous choice for the conformal
boundary metric or, equivalently, the conformal factor.
As one can see from the calculations presented in
Ref. [11], although a coordinate transformation was per-
formed in order to simplify the conformal boundary metric,
it did not lead to as great a simplification as can be
achieved by using the transformation (11).

We shall conclude with a remark on the action of the
asymptotic symmetry group. Since we are working on the

universal covering space gAdSn of AdSn � SO�n� 1; 2�=

SO�n� 2; 1�, this is an infinite covering fSO�n� 1; 2� of
SO�n� 1; 2�. The bulk energy E and the angular momenta
Ji transform properly under the action of the asymptotic
symmetry group as the components of a 5� 5 antisym-
metric tensor JAB, which may be thought of as an element

of the Lie algebra fso�n� 1; 2�. The transformation rule is
just the adjoint action.

The transformation properties of the Casimir energy are
more subtle. In general, the asymptotic group acts on the
boundary by consometries, i.e., preserving the boundary
metric h only up to a conformal factor. Depending upon
one’s choice of the boundary metric, i.e., of the represen-
tative in its conformal equivalence class, there may be a
subgroup which acts by isometries. If, as we have done, we
choose the Einstein static universe ESUn�1 as boundary
metric, then this subgroup is R� SO�n� 1� and is maxi-
mal. Indeed, it is an infinite covering of the maximal
compact subgroup of SO�n� 1; 2�. The Casimir contribu-
tion to the energy is clearly invariant under the subgroup of
isometries of the boundary metric, but it transforms in a
well-defined but more complicated and nontrivial fashion
under those elements of the asymptotic symmetry group
which do not induce isometries. Choosing the Einstein
static universe ESUn�1 as boundary metric minimizes
these complications.

In summary, we have seen from previous work that the
description of the bulk thermodynamics of rotating black
holes in an AdS background is greatly simplified if one
refers the energy and the angular velocities of the black
hole to a coordinate frame that is nonrotating at infinity.
Especially, one should not choose a rotating coordinate
frame whose asymptotic angular velocity depends upon the
23160
parameters of the black hole. In this Letter, we have
furthermore shown that the description of the boundary
CFT is greatly simplified if one likewise defines a confor-
mal boundary metric that does not depend upon the pa-
rameters of the black hole. This is straightforwardly
achieved by applying the coordinate transformation (11)
to the asymptotically static form of the Kerr–AdS metrics
given in (8) and defining the boundary metric as the section
y � constant as y tends to infinity. By this means, all the
complications associated with the unnecessary introduc-
tion of black-hole parameter dependence of the thermody-
namical quantities in the boundary theory are avoided.
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