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Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements
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Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly
quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first
time only proper two-point, single time measurements, provides a key step in unraveling the space-time
structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster
spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth’s
orbit.
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The solar wind provides a natural laboratory for study of
plasma turbulence at low frequency magnetohydrody-
namic (MHD) scales [1,2], with immediate applications
in scattering of solar and galactic cosmic rays [3,4], geo-
space (‘‘space weather’’) [5], and heating of interplanetary
plasma [6,7]. The implications of this best studied case of
astrophysical plasma turbulence extend from the coronal
heating and origin of the solar wind [8], to rates of star
formation [9]. Solar-wind fluctuation properties have been
studied in detail [2,10,11]; however, there remains
throughout a pervasive ambiguity whenever time-lagged
single spacecraft data are used to infer spatial properties.
This familiar ‘‘frozen-in flow’’ approximation [12] works
because the ordered radial (R̂) solar-wind flow (at speed
Vsw) is supersonic and super-Alfvénic. Thus, time lags t are
equivalent to spatial lags r � VswR̂t. That is, convection
past the detector occurs in a time short compared to all
relevant dynamical time scales. However, the correct way
to establish spatial structure is through simultaneous two-
point single time measurements. But multipoint data have
generally not been available. This situation has been par-
tially alleviated in recent years due to the flotilla of space-
craft currently measuring heliospheric conditions.

Here we report an evaluation of two-point correlation
functions using simultaneous measurements from the
Wind, ACE, and four Cluster spacecraft, allowing, for
the first time, the quantitative verification of several basic
solar-wind turbulence results, previously obtained only
from single spacecraft observations. We compute estimates
of the spatial correlation function and determine both the
magnetic outer or correlation length scale, and the Taylor
microscale. This permits the empirical determination of an
effective magnetic Reynolds number. Other recent multi-
spacecraft studies have focused on time-domain and/or
time-lagged optimization of correlations (e.g., [13,14]).

In 1980 the NASA Plasma Turbulence Explorer Panel
[15] emphasized the need for simultaneous measurements
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of plasma and magnetic field fluctuations so that inter-
planetary MHD turbulence might become as well
grounded in observations as classical hydrodynamic turbu-
lence theory. The ambiguities associated with the frozen-in
flow approximation are even more problematic in plasma
turbulence, where the dispersive waves, and anisotropy,
provide complications. These issues have contributed to
the persistence of both ‘‘wave’’ and ‘‘turbulence’’ inter-
pretations, that have coexisted in space and astrophysics
for four decades. Consequently, a baseline understanding
of interplanetary turbulence using multiple spacecraft data
acquires a particular importance.

The most basic characteristic of turbulence is that it
consists of fluctuations about a mean state. If it is homoge-
neous in space, then the means, variances, and correlations
of fluctuations are independent of the choice of origin of
the coordinate system [16]. For a magnetic field B�x; t� �
B0 � b, the mean is hBi � B0, the fluctuation (turbulence)
is b � B� B0, the variance is �2 � hjbj2i and the two-
point correlation function is R�r� � hb�x� � b�x� r�i. For
homogeneity, R and B0 are independent of x, but in reality
may be weakly dependent on position. Here h. . .i is an
ensemble average that is equivalent to a suitably chosen
time- or space-averaging procedure. For space and time
correlations, the generalization is

R�r; �� � hb�x; t� � b�x� r; t� ��i; (1)

which depends also upon time lag � and is time stationary
if independent of t. The frozen-in hypothesis makes use of
the approximation R�ẑVswt; 0� � R�0;�t� in the presence
of a rapid uniform z-aligned flow at velocity ẑV. For large
jrj, well behaved turbulence become uncorrelated and R!
0. A standard measure of the length scale associated with
decorrelation is the outer or correlation scale �qc , defined
by a normalized line integral, e.g., �c �

R
1
0 R�sq̂�ds=R�0�

where q̂ is a unit vector that selects the direction of
integration. One can define a direction-averaged correla-
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FIG. 1. Estimates of correlation function R�r� from 264 ACE-
Wind samples, for separation distances 20–350 RE. A fit to a
constrained [Rbb�0� � 1] exponential (dashed line) gives corre-
lation scale �c � 186RE.
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tion scale �c. Another fundamental length scale is the
Taylor microscale �T � �hjbj2i=hjr 	 bj2i
1=2, which is
the curvature of R�r� at the origin, and the characteristic
length scale of fluctuation gradients. It is sometimes effi-
cient to first estimate the variance �2 � hjbj2i and the
second order structure function S�r� � hjB�0� � B�r�j2i,
and then reconstruct the correlation function as R�r� �
�2 � S�r�=2. Here we present the first systematic determi-
nation of R�r�, �c, and �T from multiple spacecraft data.

In the present analysis the magnetic field is measured
simultaneously by pairs of spacecraft, and statistics are
assembled to estimate the correlation function and associ-
ated length scales. All of the data are at a distance �1 AU
from the sun, and essentially on the ecliptic plane. We use
either the Advanced Composition Explorer (ACE) space-
craft, paired with the Wind spacecraft, during the period
from February, 1998 to December, 2001, or else pairs of
Cluster spacecraft in the periods April 1–6, 2003 (Group I)
and January 19–February 2, 2004 (Group II). The ACE-
Wind interspacecraft spatial separation is usually in the
range of 20 to 350 Earth radii (1 RE � 6378 km). The
Cluster interspacecraft separation for these periods ranges
from 1=40RE to 1 RE.

The ACE-Wind data are analyzed with a cadence of
1 min, and individual correlation estimates are obtained
by averaging over contiguous 24 h periods of data. For
each interval I, using the observed magnetic field BI, we
compute a mean magnetic field BI

0 and the fluctuation
bI � BI � BI

0.
In classical turbulence theory, one seeks to describe a

broader range of phenomena by introducing similarity
variables. A standard choice is to express the two-point
correlation function as

R�r� � �2R̂�r=�c�; (2)

where R̂ is a dimensionless universal function. This is
relevant to the solar wind where the turbulence energy
density is known to vary with solar rotation, solar cycle,
and transient effects [2]. We choose a normalization
scheme that takes this into account, and adopt a variance
normalization. We compute [17], in each data-interval,
normalized correlation functions Rnorm;I�r� � �IhbI�x� �
bI�x� r�i, where �I � hb � bi=hbI � bIi, so that
Rnorm;I�0� � hjbj2i for all intervals I. We present results
for R̂ � Rnorm=hjbj2i. We will not attempt a normalization
of the spatial lag r because we will not have independent
measurements of �c for each interval.

Our first result is an evaluation of the magnetic autocor-
relation R�r� from 264 ACE-Wind estimates of normalized
correlation amplitude. Figure 1 demonstrates the expected
gradual decrease in correlation amplitude as the ACE-
Wind spatial separation ranges approximately from 20 to
350 RE (0.001 AU to 0.015 AU; 1 AU � 1:5	 1013 cm). It
is notable that the data show a great deal of scatter, even
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after normalization. Of the various normalizations we have
compared, the present approach best organizes the data.

The level of scatter in these estimates appears to be
consistent with expectations of the classical random func-
tion ergodic theory [18]. Estimates of the correlation func-
tion from data of finite duration T act similarly to the
estimates �2

T of the variance �2, based on an interval of
data of length T. The expected statistical variance of a such
estimates behaves asymptotically as

�2
T � h��

2
T � �

2�2i � 4�4 Tc
T
; (3)

provided that the random vector field is stationary with
Gaussian (jointly normal) one-point statistics. In our case,
b, in the solar wind, is approximately Gaussian [19,20],
while the distribution of mean field strength B0 and turbu-
lence energy �2 are broader and roughly log-normal
[20,21]. We may estimate the correlation time Tc in the
above equations using single spacecraft observations, from
which Tc � 3–10 h. Using the value Tc � 6 h, and the
interval length T � 24 h used in the ACE-Wind analysis,
we conclude that a fractional variability of �2

24 h=�
4 � 1 is

the expected size of the scatter in correlation function
estimates using this method. This intrinsic variability in
no way prevents the mean correlation from approaching a
stable ensemble average.

A (crude) mean correlation function is extracted from
the data by a least squares fit to an assumed exponential
form R�r� � R�0�e�r=� constrained to pass through
R�0� � 1. Fitting to the ACE-Wind data gives the correla-
tion function in Fig. 1. The associated estimate of the
(direction-averaged) correlation length is �c � 186RE �
0:0079 AU. A range �c at 1 AU have been reported from
frozen-in flow methods using single spacecraft data, e.g.,
[22,23], with an average of 0.033 AU.
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FIG. 2. Estimates of correlation function from ACE-Wind data
(as in Fig. 1), supplemented by two sets of Cluster data, a set (1)
with separations 0.4–1.2 RE from data in 2003, and a set (2) with
smaller separations 0.02–0.04 RE, from 2004 data.
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FIG. 3. Constrained exponential fit to ACE-Wind and Cluster
set (2) data. This provides an estimate of �c � 193RE.

TABLE I. Summary of data intervals used for this analysis.

Data set Separation (RE) Length Number

ACE-Wind 20–350 2 d 264
Cluster (I) 0.44–1.21 2–16 h 30
Cluster (II) 0.024–0.042 1–35 h 102
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The four Cluster spacecraft orbit Earth with varying
interspacecraft separation and for a few months per year
in the solar wind. This affords an opportunity to supple-
ment the ACE-Wind analysis with independent measure-
ments at spatial separations not otherwise available.
Cluster data in both Groups I and II (see Table I) are
analyzed beginning with a 0.2 or 0.045 sec cadence, re-
spectively, which are averaged or undersampled down to
4 sec resolution. Intervals that include unwanted magneto-
spheric wave activity, usually with period around 10 sec,
are rejected by inspection. Correlation analysis is carried
out on 1 to 35 h samples and in the same way as for the
ACE-Wind data, described above. Group I Cluster data has
interspacecraft spacings ranging from about 0.5 to 1 RE,
with a mean of about 0:63RE, much smaller than the ACE-
Wind separations. However these separations are expected
to lie in the inertial range of solar-wind fluctuations, as the
dissipation scale �1=kdiss (dissipation wave number kdiss)
demarcates the short wavelength end of the inertial range,
and is estimated to be � 1000 km [24]. Group II Cluster
data, from 2004, are at still much smaller separations,
around 150–250 km, with a mean around 0:034RE. Here
we expect to see nonscale invariant effects associated with
the termination of the inertial range.

Figure 2 shows correlation estimates from all three sets
of data. One can see the convergence of the normalized
correlation function towards unity as the separation tends
to zero. The spread in each set is of the order of the
deviation of the correlation from unity, so the groups of es-
timates tighten up as the correlation gets larger. Antici-
pating that Cluster group II, with smallest separations, does
not correspond to the inertial range, we refine the large
(outer) scale fit by including both ACE-Wind and Cluster
group I. A constrained exponential fit is carried out, de-
picted in Fig. 3. The result for the correlation scale is now
193RE, rather close to the earlier result that used only
ACE-Wind estimates.

The Cluster group II estimates are so highly correlated
(Rbb � 0:995) that they are almost certainly associated
with the asymptotic approach of the correlation function
to unity [16], lim�!0R0bb��� � 0 while lim�!0Rbb��� � 1.
For homogeneous turbulence, there is the additional re-
quirement that Rbb is an even function of its (vector)
argument, so that a power series developed about r �
jrj � 0 contains only even powers of r. The Taylor micro-
scale, �T , essentially the radius of curvature at the origin, is
determined byRbb�r� � 1� r2��2

T =2� . . . . We extract an
estimate of �T from the analysis by carrying out a fit to a
23110
constrained parabolic curve, using the Cluster group II
data. The result (Fig. 4) is �T � 0:39
 0:11RE � 2478

702 km � 1:6	 10�5 AU. This is the characteristic scale
of the spatial derivatives of solar-wind magnetic field
fluctuations.

In general, kdiss�T > 1 in hydrodynamic turbulence [16],
and this product � R1=2

m . However the latter relationship
depends upon classical viscous dissipation in the momen-
tum equation, while the exact form of the dissipation
function in the collisionless solar wind remains a matter
of debate [24,25]. We note here that if the dissipation scale
indeed is approximately the ion inertial scale c=!pi,
around 500–700 km at 1 AU in the solar wind (Leamon
et al., 1998), then we find that kdiss�T � 4 for 1 AU
conditions.

Given the broadband character of solar-wind turbulence,
we suggest that a better estimate of the effective magnetic
Reynolds number Reff

m can be obtained using the measured
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FIG. 4. Parabolic fit to Cluster data set II, providing an esti-
mate of the inner scale, or Taylor microscale, of solar-wind
turbulence at 1 AU.

PRL 95, 231101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 DECEMBER 2005
outer scale and Taylor microscale lengths. Using the clas-
sical hydrodynamics relationship [16] and the results
above, we deduce that

Reff
m �

�
�c
�T

�
2
� 230 000: (4)

In conclusion, the use of two-point, single time correla-
tion methods using multispacecraft analysis has enabled
the confirmation and possible refinement of several key
measurements of space plasma turbulence. We have con-
strained the correlation function in three bands of spatial
separation, and evaluated the correlation scale and the
Taylor microscale. These measurements permit evaluation
of an effective Reynolds number of 230 000. The above
correlation scale is a factor of 2–4 smaller than many
reported values based upon frozen-in flow [4,6,26]. This
may be due to the high degree of variability of the energy
density of solar-wind turbulence at a fixed (1 AU) position,
and, in particular, the presence of scale invariant ‘‘1=f’’
noise in the magnetic field [27]. Further multispacecraft
studies of interplanetary MHD scale turbulence will be
required to verify the present results, complementing ear-
lier analyses carried out in the time or frequency domain
(e.g., [13,14,23]), and to quantitatively assess possible
systematic effects in the frozen-in flow approximation.
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