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Momentum Distribution and Condensate Fraction of a Fermion Gas in the BCS-BEC Crossover
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By using the diffusion Monte Carlo method we calculate the one- and two-body density matrix of an
interacting Fermi gas at T � 0 in the BCS to Bose-Einstein condensate (BEC) crossover. Results for the
momentum distribution of the atoms, as obtained from the Fourier transform of the one-body density
matrix, are reported as a function of the interaction strength. Off-diagonal long-range order in the system
is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction
of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.
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The physics of the crossover from Bardeen-Cooper-
Schrieffer (BCS) superfluids to molecular Bose-Einstein
condensates (BECs) in ultracold Fermi gases near a
Feshbach resonance is a very exciting field that has re-
cently attracted a lot of interest, both from the experimental
[1,2] and the theoretical side [3]. An important experimen-
tal achievement is the observation of a condensate of pairs
of fermionic atoms on the side of the Feshbach resonance
where no stable molecules would exist in vacuum [4,5].
Although the interpretation of the experiment is not
straightforward, as it involves an out-of-equilibrium pro-
jection technique of fermionic pairs onto bound molecules
[6], it is believed that these results strongly support the
existence of a superfluid order parameter in the strongly
correlated regime on the BCS side of the resonance [5].

The occurrence of off-diagonal long-range order
(ODLRO) in interacting systems of bosons and fermions
was investigated by C. N. Yang in terms of the asymptotic
behavior of the one- and two-body density matrix [7]. In
the case of a two-component Fermi gas withN" spin-up and
N# spin-down particles, the one-body density matrix
(OBDM) for spin-up particles, defined as

�1�r01; r1� � h 
y
" �r
0
1� "�r1�i; (1)

does not possess any eigenvalue of order N". This behavior
implies for homogeneous systems the asymptotic condi-
tion �1�r01; r1� ! 0 as jr1 � r01j ! 1. In the above expres-
sion  y" �r� [ "�r�] denote the creation (annihilation)
operator of spin-up particles. The same result holds for
spin-down particles. ODLRO may occur instead in the
two-body density matrix (TBDM), that is defined as

�2�r01; r
0
2; r1; r2� � h 

y
" �r
0
1� 

y
# �r
0
2� "�r1� #�r2�i: (2)

For a homogeneous unpolarized gas with N" � N# �
�N=2�, if �2 has an eigenvalue of the order of the total
number of particles N, the TBDM can be written as a
spectral decomposition separating the largest eigenvalue
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yielding for jr1 � r01j, jr2 � r02j ! 1 the asymptotic be-
havior

�2�r01; r
0
2; r1; r2� ! �N=2’��jr01 � r02j�’�jr1 � r2j�: (3)

The parameter � � 1 is interpreted as the condensate
fraction of pairs, in a similar way as the condensate fraction
of single atoms is derived from the OBDM. The complex
function ’�r� is normalized to the inverse volume �1=V�

and is proportional to the order parameter h "�r1� #�r2�i ��������������
�N=2

p
’�jr1 � r2j�, whose appearance distinguishes the

superfluid state of the Fermi gas. Equation (3) should be
contrasted with the behavior of Bose systems with
ODLRO, where �1 has an eigenvalue of order N [8],
and consequently the largest eigenvalue of �2 is of the
order of N2.

In this Letter we present fixed-node diffusion
Monte Carlo (FN DMC) results of �1 and �2 for a homo-
geneous interacting Fermi gas at T � 0 in the BCS-BEC
crossover. From the Fourier transform of �1�r�, we calcu-
late the momentum distribution of the gas, nk �R
d3r�1�r�e

ik�r, as a function of the interaction strength.
From the asymptotic behavior of �2, we extract the value
of the condensate fraction of pairs �. The calculated
condensate fraction is compared with analytical expan-
sions holding on the BEC and BCS sides of the Feshbach
resonance. The comparison with mean-field results [9] for
nk and � is also discussed.

We consider a homogeneous two-component unpolar-
ized Fermi gas described by the Hamiltonian

H � �
@

2

2m

� X�N=2�

i�1

r2
i �

X�N=2�

i0�1

r2
i0

�
�
X
i;i0
V�rii0 �; (4)

where m is the mass of the particles and i; j; . . . (i0; j0; . . . )
label spin-up (spin-down) particles. The strength of the
interaction is assumed to be determined only by the pa-
rameter 1=kFa, with kF � �3�2n�1=3 the Fermi wave-
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FIG. 1 (color online). OBDM for different values of the inter-
action strentgth 1=kFa (solid lines). The dotted line (blue online)
corresponds to e�r=a for 1=kFa � 4 and the dashed line (red
online) is the OBDM of a non interacting gas.
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vector fixed by the atomic density n � N=V, and a the
s-wave scattering length describing the low-energy colli-
sions between the two fermionic species. The interatomic
interactions in Eq. (4) are only between atoms with differ-
ent spin and are modeled by a short-range potential that
determines the value of a. In the present study, we use an
attractive square-well potential, V�r� � �V0 for r < R0

and V�r� � 0 otherwise, with nR3
0 � 10�6. We have veri-

fied that in the density range nR3
0 � 10�7 � 10�5 the

particular form of V�r� is not relevant, and therefore the
present results are in this sense universal. The different
regimes: BEC (a > 0 and 1=kFa	 1), BCS (a < 0 and
1=kFjaj 	 1), and unitary limit (1=kFa � 0), are obtained
by varying the potential depth V0 as in Ref. [10]. Quantum
Monte Carlo studies of the Hamiltonian (4) have already
been carried out to investigate the T � 0 equation of state
[10–12] and the pairing gap [11,12].

In a FN DMC simulation, the wave function f�R; �� �
 T�R���R; �� (R � r1; . . . ; rN" ; r10 ; . . . ; rN#) is evolved in
imaginary time � � it=@ according to the time-dependent
Schrödinger equation, with  T�R� acting as importance
sampling function and as nodal constraint. The function
��R� 
 ��R; �! 1�, which is the lowest energy state of
the system having the nodes of  T�R�, is obtained from the
large-time evolution of f�R; ��. The trial wave function
we consider has the general form [11–13]  T�R� �
�J�R��BCS�R�, where �J contains Jastrow correlations
between all the particles,

�J�R� �
Y
i<j

f""�rij�
Y
i0<j0

f##�ri0j0 �
Y
i;i0
f"#�rii0 �; (5)

and the BCS-type wave function �BCS is the antisymme-
trized product of the pair wave functions ��ri � ri0 �

�BCS�R� �A���r1 � r10 ���r2 � r20 � . . .��rN" � rN# ��:

(6)

The pair orbital ��r� is chosen as

��r� � �
X

k��kmax

eik��r ��s�r�; (7)

where the sum is performed over the plane wave states
k� � 2�=L�‘�xx̂� ‘�yŷ � ‘�zẑ� up to the largest closed
shell kmax � 2�=L�‘2

xmaxx � ‘
2
maxy � ‘

2
maxz�

1=2 occupied
by N=2 particles. Here L � V1=3 is the size of the cubic
simulation box and ‘ are integer numbers. If �s�r� � 0 in
Eq. (7), �BCS in Eq. (6) coincides with the exact wave
function of a free Fermi gas, i.e., the product of Slater
determinants of spin-up and spin-down particles [14]. The
spherically symmetric function �s�r� in Eq. (7) accounts
for s-wave pairing. If 1=kFa � �0:2,�s�r� corresponds to
the solution of the two-body problem with the potential
V�r�, as in Ref. [10]. For 1=kFa <�0:2 we use instead
�s�r� � �1fexp���2r� � exp���2�L� r�
g. Here, �1,
�2, and � in Eq. (7) are variational parameters.
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The Jastrow wave function �J, Eq. (5), is determined as
follows. For 1=kFa � �0:2, we use f"#�r� � 1 and
f""�r� � f##�r� given by the two-body solution of a ficti-
tious repulsive step potential with range ~R and scattering
length ~a. The boundary conditions f�r � L=2� � 1 and
f0�r � L=2� � 0 determine the wave function in terms of
the variational parameters ~R and ~a. For 1=kFa <�0:2, we
use instead f""�r� � f##�r� � 1 and the model used in
Ref. [10] for the crossed correlation factor, f"#�r�. It is
worth noticing that the function  T�R� defined above
reproduces as a special case the trial wave function used
in the preceding study [10], but contains more variational
parameters. The parameters of the Jastrow function �J,
Eq. (5), are optimized by minimizing the variational ex-
pectation value h T jHj Ti=h T j Ti. The parameters of the
BCS function �BCS, Eq. (6), affect the nodal surface of the
trial wave function and they are optimized by minimizing
the FN DMC estimate of the energy. For the values of
1=kFa used in the present study, the calculated FN DMC
energies are in agreement with the results obtained in
Ref. [10], although the optimized variational energy has
significantly improved.

A direct estimate of any operator O in DMC is known
as mixed estimate, hOim � h T jOj�i=h T j�i, and is ex-
act only for the Hamiltonian and operators commut-
ing with it. If O is a local operator, one can circumvent
this problem by introducing pure estimators. That is not
the case for �1 and �2 which are the objectives of the
present work. In order to reduce, and even eliminate in
practice, a possible bias in the calculation we have used the
extrapolated estimator h�jOj�i=h�j�i ’ 2hOim � hOiv,
with hOiv � h T jOj Ti=h T j Ti [13].

We consider a system with N � 66 particles and peri-
odic boundary conditions. In Fig. 1 we show results of the
OBDM�1�r�, Eq. (1), for different values of the interaction
strength 1=kFa. In the deep molecular regime, 1=kFa	 1,
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the OBDM is determined by the molecular wave function
�bs�r�: �1�r� ’ �n=2�

R
d3r0��bs�jr� r0j��bs�r

0�. For a
zero-range potential the molecular wave function is given
by �bs�r� / e�r=a=r and one finds �1�r� ’ ne�r=a=2. This
behavior is shown in Fig. 1 for 1=kFa � 4. If one moves
closer to the resonance, the OBDM decays slowly and
oscillations start to appear. Finally, on the BCS side of
the resonance, the OBDM becomes more and more similar
to the ideal gas result �1�r� � 3n�sin�kFr�=�kFr� �
cos�kFr�
=�2�kFr�2
. The momentum distribution nk, ob-
tained from the Fourier transform of �1�r�, is shown in
Fig. 2. In the inset of Fig. 2 we compare nk, calculated
using FN DMC for 1=kFa � 4, with the momentum dis-
tribution of the atoms in the molecular state nk �
4�kFa�

3=�3��1� k2a2�2
 [15]. To reduce finite-size effects
in the calculation of the Fourier transform for 1=kFa � 0
and �1, we have used the following model for the k
dependence of nk

nk � A
�
1�

�k=kF�2 ����������������������������������������������
��k=kF�

2 ��
2 � �2
p

�
: (8)

The values of �, �, and A are free parameters determined
by the best fit of the inverse Fourier transform of Eq. (8) to
the calculated �1�r�, with the constraint �1=V�

P
knk �

�n=2�. For A � 1=2, the above expression reproduces the
standard nk of BCS theory with � and �, respectively, the
chemical potential and gap in units of the Fermi energy
	F � @

2k2
F=2m. For 1=kFa � 0 and �1 the Fourier trans-

form of the BCS model, Eq. (8), reproduces quite well the
calculated �1�r� with a 
2=� of the order of 1. In Fig. 2 we
also show the results of nk obtained using the BCS mean-
field theory [9], where the values of chemical potential and
gap are calculated self-consistently through the gap and
number equations [15]. The results of Fig. 2 show that the
FIG. 2 (color online). Momentum distribution nk for different
values of 1=kFa (solid lines). The dashed lines (red online)
correspond to nk calculated using the BCS mean-field approach
[15]. Inset: nk for 1=kFa � 4. The dotted line (blue online)
corresponds to the momentum distribution of the molecular state
nk � 4�kFa�

3=�3��1� k2a2�2
.
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mean-field theory overestimates the broadening of nk in
the crossover region �1 � 1=kFa � 1. Measurements of
the momentum distribution of harmonically trapped sys-
tems have recently become available in the crossover [16].
The comparison carried out at unitarity, using the local
density approximation, shows a good agreement with the
observed distribution, but the experimental uncertainty is
too large to distinguish between mean-field and FN DMC
results [16].

The condensate fraction of pairs � has been obtained
from the projected TBDM, defined as [17,18]

�P2 �r� �
2

N

Z
d3r1d3r2�2�r1 � r; r2 � r; r1; r2�: (9)

By using Eq. (3) one finds that limr!1�P2 �r� � �. In terms
of the order parameter, F�jr1 � r2j� � h "�r1� #�r2�i,
one has instead limr!1�P2 �r� � 2=n

R
d3r0jF�r0�j2. In

Fig. 3 we show the results of �P2 �r�. Effects due to the
finite simulation box can be substantially reduced if
one considers the decomposition: limr!1�2�r1 � r; r2 �
r; r1; r2� � jF�jr1 � r2j�j

2 � �2
1�r�, accounting for the

large r behavior of �2 when �1�r� is small but not zero.
From this result one finds for the asymptotic behavior of
the projected TBDM: limr!1�

P
2 �r� � �� �N=2��

�2�1�r�=n�2. In Fig. 3 we show results for the quantity
h�r� � �P2 �r� � �N=2��2�1�r�=n�2, which smoothly con-
verges to a constant for large distances. The results for
the condensate fraction �, as obtained from the asymptotic
behavior of h�r�, are shown in Fig. 4. In the BEC regime,
the results reproduce the Bogoliubov quantum depletion of

a gas of composite bosons � � 1� 8
������������
nma3

m

p
=3

����
�
p

, where
nm � �n=2� is the density of molecules and am � 0:6a is
the dimer-dimer scattering length [10,19]. In the opposite
FIG. 3 (color online). Projected TBDM, �P2 �r�, (solid sym-
bols), �N=2��2�1�r�=n�


2 (lines) and h�r� � �P2 �r� � �N=2��
�2�1�r�=n
2 (open symbols) for different values of 1=kFa:
1=kFa � 1 [solid line and triangles (red online)], 1=kFa � 0
[dashed line and circles (blue online)] and 1=kFa � �1 [dotted
line and diamonds (green online)]. The condensate fraction of
pairs � corresponds to the asymptotic behavior of h�r�.
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FIG. 4 (color online). Condensate fraction of pairs � as a
function of the interaction strength: FN DMC results (symbols),
Bogoliubov quantum depletion of a Bose gas with am � 0:6a
[dashed line (red online)], BCS theory using Eq. (10) [dot-
dashed line (blue online)] and self-consistent mean-field theory
[solid line (green online)].
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BCS regime, the condensate fraction � can be calculated
from the result of the BCS order parameter holding for
r	 a [20]

FBCS�r� �
�k3

F

	F

sin�kFr�

4�2kFr
K0�r=�0�; (10)

where �0 � @
2kF=m� is the coherence length and K0�x� is

the modified Bessel function. If we include the
Gorkov–Melik-Barkhudarov correction for the pairing
gap [21] � � �2=e�7=3	Fe

��=2kFjaj, we obtain for � �
2=n

R
d3rF2

BCS�r� the dot-dashed line shown in Fig. 4. On
the BEC side of the resonance, we notice that the agree-
ment with the Bogoliubov quantum depletion, extending
up to 1=kFa * 1, is consistent with the evidence of the
Lee-Huang-Yang beyond mean-field correction in the
equation of state [10]. On the BCS side the comparison
of the pairing gap � with the Gorkov–Melik-Barkhudarov
result is discussed in Ref. [12]. We have checked that
effects due to finite N are smaller than the statistical
uncertainty. For example, at 1=kFa � 0, we find � �
0:57�2� for N � 66 and � � 0:61�2� for N � 38 particles.
For 1=kFa � �1 the coherence length �0 becomes in-
creasingly larger and these effects start to be relevant. At
1=kFa � �1, the value of �, as obtained from FBCS�r�
[Eq. (10)], reduces from 0.10 to 0.08 by cutting off the
spatial integral at the simulation box size r � L=2. The
condensate fraction � can also be estimated using the self-
consistent mean-field approach [9] and the result for the
order parameter: F�r� � �1=V�

P
kukvke

ik�r, where uk and
vk are the usual quasiparticle amplitudes of BCS theory.
The result is shown in Fig. 4 with a solid line (see also
Ref. [18]).

In conclusion, we calculate using quantum Monte Carlo
techniques the momentum distribution and the condensate
fraction of pairs of a strongly interacting Fermi gas at zero
23040
temperature. Significant deviations from the mean-field
description point out the role of correlations and quantum
fluctuations in the BCS-BEC crossover.
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