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Theory of Decoherence due to Scattering Events and Lévy Processes
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A general connection between the characteristic function of a Lévy process and loss of coherence of the
statistical operator describing the center of mass degrees of freedom of a quantum system interacting
through momentum transfer events with an environment is established. The relationship with micro-
physical models and recent experiments is considered, focusing on the recently observed transition
between a dynamics described by a compound Poisson process and a Gaussian process.
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The study of decoherence [1], both at theoretical and
experimental level, owes its relevance to a twofold moti-
vation: on the one and historically older hand it provides a
fruitful research area for the exploration of the quantum
classical boundary, on the other hand it is the formidable
quantum enemy to be overcome or outwitted in order to
actually realize quantum computers. Recently various ex-
periments have been performed in which both qualitative
and quantitative analyses of decoherence are feasible.
These achievements both force and invite us to go beyond
an implicitly established ‘‘common lore’’ [2], which some-
times deceitfully lets features of simplified models appear
universal, contrary to experimental evidence [3]. In the
present Letter we will focus on the issue of decoherence
of the center of mass degrees of freedom of massive test
particles, an object of recent and very accurate quantitative
experimental investigations [4–7], showing how these dif-
ferent situations can be addressed within a unified theo-
retical approach which, exploring the most often fruitful
connections between quantum and classical probability
[8], puts into evidence how the loss of coherence in the
off-diagonal position matrix elements of the statistical
operator is generally described by the characteristic func-
tion (CF) of a Lévy process (LP). The common feature of
the abovementioned experiments is the fact that, provided
dissipative effects which take place on a much longer time
scale are neglected, the interaction causing decoherence
can be characterized through momentum transfer events,
which following [9] we will generally call collisions; their
effect can be described by means of a decoherence super-
operator, a completely positive operation whose matrix
elements in the position representation put into evidence
a quantity often called decoherence function. In the
Markovian case a common description of such dynamics
can be obtained referring to the general structure of
translation-covariant quantum-dynamical semigroups ob-
tained by Holevo [10], relying on a quantum generalization
of the Lévy-Khintchine formula. LP are a class of pro-
cesses, including Gaussian processes, which despite obey-
ing the Chapman-Kolmogorov equation characterizing
Markov processes not necessarily have finite variance, so
that the central limit theorem does not always apply. Such
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processes were in fact found looking for generalizations of
such theorem, and are both space and time homogeneous,
thus naturally arising when considering space translation
invariance. The general structure of the CF, i.e., the Fourier
transform of the probability density (PD), of such pro-
cesses is given by the famous Lévy-Khintchine formula
[for a most compact presentation see [11] and references
therein]. The relevance of LP in physics is growing [12],
since they allow to cope with situations not encompassed
by the central limit theorem. This is therefore a natural way
to improve the usual, almost ubiquitous models relying on
linear coupling and Gaussian statistics, whose limitations
in the description of open systems and, in particular, of
decoherence begin to be appreciated [2,3,13].

We first start by introducing in a way adapted to our
purposes the results by Holevo [10], later connecting them
to microphysical derivations and experimental realizations.
If the dynamics causing decoherence is Markovian and
described in terms of momentum transfers, so that in the
absence of an external potential one has translation invari-
ance, the generator of the quantum-dynamical semigroup
generally has the structure d�̂=dt � LG��̂� �LP��̂� with
�̂ the statistical operator of the test particle; LG a so-called
Gaussian component given by

L G��̂� � �ia�x̂; �̂� �
1
2D�x̂; �x̂; �̂��; (1)

written for simplicity in the one-dimensional case, with
a 2 R, D> 0, and x̂ the position operator of the test
particle; LP the so-called Poisson component
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Z
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1�q2=q2
0

�
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where j!�q�j2dq is a positive measure, also called Lévy
measure, with j!�q�j2 possibly divergent in zero but
such that the Lévy condition

R
dqj!�q�j2q2=�1�q2�<1
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holds, the weights ��q� and !�q� are in the general case
complex functions, the integration variable q has the di-
mension of momentum and the meaning of momentum
transfer, the parameter q0 only appearing for dimensional
purposes in the regularizing factor. In stating the result we
have neglected free evolution and dissipative effects which
are relevant only on a much longer time scale, so that the
momentum of the test particle has essentially been treated
as a C number. Focusing on the position matrix elements
the master equation takes the form

d
dt
hxj�̂jyi � ���x� y�hxj�̂jyi (3)

with ��x� y� given by (note the dependence on x� y
according to translation invariance)
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(4)

so that one immediately has the general solution

hxj�̂tjyi � e�t��x�y�hxj�̂0jyi: (5)

The function ��t; x� y� 	 e�t��x�y� is the CF of a LP,
��x� y� being called its characteristic exponent, the
quantity actually fully characterized by the Lévy-
Khintchine formula. The fact that ��t; x� y� is a CF
automatically entails that its modulus is less than one and
the value one for x� y tending to zero, i.e., the natural
properties in order to predict the reduction of the off-
diagonal matrix elements in (5) due to decoherence. This
suppression of coherence, however, happens with a variety
of behaviors going far beyond the quadratic common lore
corresponding to Gaussian statistics, depending on the
process characterizing the physical interaction.

We now briefly present some microphysical models
giving specific realizations of (3) and make later contact
with actual experiments; as it turns out Eq. (3) actually
encompasses all known models of decoherence for the
center of mass degrees of freedom [1]. Let us first consider
the motion of a massive test particle interacting through
collisions with a background gas, developed in detail in
[14], where also dissipative effects have been taken into
account, relying on a kinetic approach. Neglecting free
motion and dissipation the result becomes

d
dt
hxj�̂jyi � n�2��4@2

Z
d3qj~t�q�j2S�q; E�


 �e�i=@�q��x�y� � 1�hxj�̂jyi; (6)

where n is the gas density, ~t�q� the Fourier transform of the
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interaction potential, and S a two-point correlation func-
tion characterizing the gas known as dynamic structure
factor depending on both momentum and energy transfer
(q and E). For a finite macroscopic scattering cross section
� � �2��4@2�M=p0�

R
d3qj~t�q�j2S�q; E�, with M the mass

of the test particle and p0 its incoming momentum, one can
introduce a scattering rate � 	 n�p0=M�� and a suitably
normalized PD

P �q� �
n
�
�2��4@2j~t�q�j2S�q; E�; (7)

so that (5) reads

hxj�̂tjyi � e���1��P �x�y��thxj�̂0jyi; (8)

where we have introduced the CF �P associated to the PD
P , i.e., its Fourier transform. Here no confusion should
arise: the exponential function in (8) is the CF of a LP
which in this particular case can be expressed in terms of
the CF �P of the PD P . Equation (8) is a particular
realization of (5) given by the choice a � D � 0, !�q� �
0, and j��q�j2 ! �P �q� in (4), corresponding to a com-
pound Poisson process [15]. The physical picture behind it
is the following: the dynamics is driven by collisions, the
probability of having a definite number of collisions in a
time t being given by a Poisson distribution with intensity
� and mean �t; each collision, however, is not character-
ized by a fixed, deterministic value of the transferred
momentum q, but rather by a certain PD P �q� depending
in the case under consideration on the two-body interaction
potential and a suitable correlation function. Leaving aside
for a moment the detailed structure of (6) related to its
microphysical derivation, the result (8) generally applies to
a situation in which one has a collection of momentum
transfer events each characterized by a certain PD (to be
obtained or introduced by means of some microscopic or
phenomenological model) corresponding to a compound
Poisson process. Note that the fact that the probability of
having a certain number of events is Poisson distributed is
crucial in order to have a Markovian dynamics [16], as we
shall see later on. The result (8) embraces the work by
Gallis and Fleming [17], which apart from a simple but
relevant correction [18] has been used for the theoretical
analysis of decoherence experiments with fullerenes, both
in the case of collisional decoherence [4] and of decoher-
ence due to thermal emission of radiation [5]. Both situ-
ations correspond to compound Poisson processes, where
the relevant PD P �q� is obtained in terms of the collisional
cross section and the spectral photon emission rate, respec-
tively [19]. According to a detailed theoretical analysis
[20] the final visibility is obtained by an average of the
characteristic exponent in (8) over the possible scattering
positions in the interferometer. Furthermore, in the case of
collisional decoherence the random momentum kicks are
so strong that the CF �P in (8) is essentially zero for the
path separations of interest, so that its actual structure is not
relevant and only the mean �t determines the fringes
visibility. The connection of Eq. (8) with the common
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lore of a Gaussian process is straightforward [14]; expand-
ing the exponential in (6) up to second order, the solution
rather than (8) becomes

hxj�̂tjyi � e����ihqi��x�y��1=2
P
hqiqji�xi�yi��xj�yj��thxj�̂0jyi;

(9)

where hqi 	
R
d3qP �q�q and hqiqji 	

R
d3qP �q�qiqj are

the moments of the PD P appearing by definition (if they
exist) as coefficients in the Taylor expansion of the CF �P .
One thus ends up with the CF of a Gaussian process with
mean given by the product of the intensity � and the first
moment of the distribution P characterizing the original
compound Poisson process, and variance given by the
product of intensity and second moments, corresponding
to the choice a! ��hqi and D! Dij � �hqiqji in (4),
��q� and !�q� being zero. As a last example we consider
the case of a massive test particle interacting with a chaotic
environment, modeled through random matrices. In the
absence of an external potential and considering an envi-
ronment with constant average level density the dynamics
is given by [21]

d
dt
hxj�̂jyi � K

�
G
�
x� y
x0

�
� 1

�
hxj�̂jyi; (10)

where G is directly related to a two-point correlation
function describing the chaotic background, with charac-
teristic correlation length x0, while K is a coupling con-
stant. In the weak-coupling limit the authors of [21]
propose the expression G�r� � 1� jrj� requiring � 2
�0; 2� due to some necessary restriction on the two-point
correlation function, so that (10) has the simple solution

hxj�̂tjyi � e�Kj�x�y�=x0j
�thxj�̂0jyi: (11)

They then show that in this case the statistical operator can
display dynamics given by so-called Lévy stable laws. This
is a naturally expected result in the present framework
since (11) is a particular case of (5) corresponding to a �
D � 0, ��q� � 0 and a Lévy measure j!�q�j2 / 1=jqj��1

corresponding to the symmetric stable LP with scaling
exponent � [15]; the restriction on � now arises due to
the Lévy condition, the case � � 2 corresponding to a
Gaussian process, all other symmetric Lévy stable laws
having infinite second moments. Suppression of spatial
coherence for random momentum transfers governed by
a Lévy stable law is expected to be stronger than for the
usual Gaussian case [22], even though no experimental
evidence is available yet.

We now consider the transition between (8) and (9), i.e.,
from the CF of a compound Poisson process to that of the
related Gaussian process, in view of recent experiments on
decoherence in an atom interferometer, obtained by spon-
taneous scattering of photons off atoms interacting in a
controlled way with a laser [7]. We will focus, in particular,
on the most recent results [6] in which both single- and
multiple-photon decoherence has been observed, noting
that ‘‘the few-photon limit is of a qualitatively different
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character’’ and following ‘‘the smooth transition between
these two regimes’’, connecting the many-photon limit
with the ‘‘common lore’’ master equation [3] predicting
exponential reduction in coherence with separation
squared. For the case of an atom interacting with a laser,
the PD that the atom experiences a given momentum trans-
fer along the direction of propagation of the laser as a
consequence of spontaneous emission has been character-
ized by Mandel [23]; let us call it PM�q� for the case of a
single photon. We can now therefore write the master
equation for the case at hand in analogy to (6) in operator
form as follows

d
dt
�̂ � �

Z
dqPM�q��e�i=@�qx̂�̂e��i=@�qx̂ � �̂�; (12)

where � is once again a scattering rate depending, e.g., on
the intensity of the laser. In order to make contact with the
analysis put forward in [6] we formally write the solution
as a Dyson expansion, thus describing the time evolution as
a sequence of jumps, given by the random momentum
transfers described by PM�q�, on the background of a
relaxing evolution, trivial for the case at hand in which
we neglect free dynamics and dissipation. The jump ex-
pansion reads

�̂t � e��t�̂0 �
X1
n�1

Z t

0
dtn

Z tn

0
dtn�1 . . .

Z t2

0
dt1e���t�tn�


 �JPM
e���tn�tn�1� . . . e���t2�t1��JPM

e��t1 �̂0

�
X1
n�0

��t�n

n!
e��tJPM

 . . .  JPM|�������������{z�������������}
n times

��̂0�; (13)

with JPM
a decoherence superoperator given by the fol-

lowing completely positive, trace preserving operation

J PM
��̂� 	

Z
dqPM�q�e

�i=@�qx̂�̂e��i=@�qx̂; (14)

where PM is a PD and the e�i=@�qx̂ are momentum trans-
lation operators. This decoherence superoperator generally
describes the effect on the statistical operator of a momen-
tum transfer randomly distributed according to PM. The
matrix elements of the decoherence superoperator in the
position representation give a function often called deco-
herence function [4,6], actually the CF associated to PM,
with all its natural properties, including the fact that it is
positive definite, corresponding to the complete positivity
of the decoherence superoperator JPM

. The Mandel PD
PM leads to

hxjJPM
��̂�jyi��PM

�x�y�hxj�̂jyi

�
3

2
eik0�x�y�

�
sinc�k0�x�y��

�
cos�k0�x�y���sinc�k0�x�y��

�k0�x�y��2

�


hxj�̂jyi; (15)

with k0 the wave vector of the exciting light, and using
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JPM
 . . .JPM|������������{z������������}
n times

��̂��
Z
dq�PM � . . .�PM|���������{z���������}

n times

��q�


e�i=@�qx̂�̂e��i=@�qx̂;

with  the composition of superoperators and � the con-
volution of PD [the convolution n times of PM giving
according to [23] the PD that a momentum transfer q is
imparted to the atom as a consequence of n spontaneous
emissions], the matrix elements of Eq. (13) become

hxj�̂tjyi �
X1
n�0

��t�n

n!
e��t�n

PM
�x� y�hxj�̂0jyi

	
X1
n�0

pn�t��
n
PM
�x� y�hxj�̂0jyi; (16)

where according to the property of the Fourier transform
the nth power of the CF �PM

appears; note that if the
scattering rate is assumed time dependent, according to a
time inhomogeneous Poisson process, nothing would
change but the replacement �!

R
t
0 dt

0��t0�. If the pn�t�
are Poisson distributed with mean �n 	 �t, where t is the
time of interaction with the laser, Eq. (16) is exactly
equivalent to Eq. (8) and this is the only distribution of
the weights pn�t� describing a Markovian dynamics [16].
For the decoherence experiments in atom interferometry
[6] the relative contrast is directly related to the modulus of
the CF in (5), so that provided the dynamics is Markovian
switching from the single- to the many-photon limit for
growing intensity of the laser the compound Poisson pro-
cess characterized by �PM

, and described by (8) or (16),
goes over to the related Gaussian process described by (9).
This is essentially what has been observed for the first time
in [6]: the smooth transition between the two qualitatively
distinct regimes can therefore be understood and described
in a unified way on the basis of the presented theoretical
framework, expressing the loss of spatial coherence in
terms of the CF of a suitable LP. In particular, the authors
of [6] compare their results with the master equation only
in the many-photon limit, when the ‘‘common lore’’ qua-
dratic expression applies, apart from the correction due to
the nonvanishing first moment reflecting anisotropy; in the
single- or few-photon limit they rely on a formula like the
jump expansion (16) of the master equation, fitting from
the very beginning the experiment with a Gaussian distri-
bution for pn�t� (though possibly allowing for a Poisson
relationship between mean and variance), rather than with
a Poisson distribution corresponding to the ideal case [24]
which describes a Markovian dynamics. These small cor-
rections notwithstanding, depending on deviations of the
atom laser interaction from the Markov regime, these
experiments have obtained the first experimental study of
the transition between the decoherence regimes described
by Eqs. (8) and (9), respectively.

A general theoretical description of decoherence due to
random momentum transfers has been presented, showing
how spatial coherence is suppressed according to the CF of
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a LP. This has been obtained relying on the general struc-
ture of translation-covariant generators of quantum-
dynamical semigroups derived by Holevo as a quantum
Lévy-Khintchine formula. Different microscopic models
have been shown to lead to particular examples of the
general structure, not only Gaussian processes, but also
compound Poisson and symmetric stable LP have been
considered, thus going beyond the usual limitation given
by Gaussian statistics and opening the way for both micro-
scopical and phenomenological treatment of new scenar-
ios, especially in connection with chaotic environments.
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of this Letter. This work was supported by MIUR under
Conanziamento and FIRB.
2-4
[1] E. Joos et al., Decoherence and the Appearance of a
Classical World in Quantum Theory (Springer, New
York, 2003), 2nd ed..

[2] J. R. Anglin et al., Phys. Rev. A 55, 4041 (1997).
[3] C. C. Cheng and M. G. Raymer, Phys. Rev. Lett. 82, 4807

(1999).
[4] K. Hornberger et al., Phys. Rev. Lett. 90, 160401 (2003).
[5] L. Hackermüller et al., Nature (London) 427, 711 (2004).
[6] D. A. Kokorowski et al., Phys. Rev. Lett. 86, 2191 (2001).
[7] T. Pfau et al., Phys. Rev. Lett. 73, 1223 (1994); M. S.

Chapman et al., Phys. Rev. Lett. 75, 3783 (1995).
[8] A. S. Holevo, Statistical Structure of Quantum Theory

(Springer, New York, 2001).
[9] R. Alicki, Phys. Rev. A 65, 034104 (2002).

[10] A. S. Holevo, Izv. Math. 59, 427 (1995); J. Math. Phys.
(N.Y.) 37, 1812 (1996).

[11] H. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford,
2002).
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