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The integrable structure of Ginibre’s orthogonal ensemble of random matrices is looked at through the
prism of the probability pn;k to find exactly k real eigenvalues in the spectrum of an n� n real asymmetric
Gaussian random matrix. The exact solution for the probability function pn;k is presented, and its
remarkable connection to the theory of symmetric functions is revealed. An extension of the Dyson
integration theorem is a key ingredient of the theory presented.
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Introduction.—In the mid-1960s, Ginibre introduced [1]
statistical ensembles of (i) real, (ii) complex, and (iii) real
quaternion random matrices whose eigenvalues may be-
long to any point of the complex plane C. They were
derived from the celebrated Gaussian orthogonal (GOE),
Gaussian unitary (GUE), and Gaussian symplectic (GSE)
random matrix ensembles [2] in a purely formal way by
dropping the Hermiticity constraint and, therefore, can be
thought of as their direct non-Hermitean descendants.
Respectively coined as GinOE, GinUE, and GinSE, non-
Hermitean random matrix models exhibited intriguingly
rich mathematical structures whose complexity exceeded
by far that of Hermitean random matrix theory (RMT).

From the physical point of view, non-Hermitean random
matrices have proven to be as important [3] as their
Hermitean counterparts [4]. Ginibre’s random matrices
appear in the description of dissipative quantum maps [5]
(GinUE), in the studies of dynamics [6] and the synchro-
nization effect [7] in random networks (GinOE), in the
statistical analysis of cross-hemisphere correlation matrix
of the cortical electric activity [8] (GinOE), and in the
characterization of two-dimensional random space-filling
cellular structures [9] (GinUE). They also arise in the
context of ‘‘directed quantum chaos’’ [10,11] (GinOE,
GinUE, GinSE). Chiral deformations of non-Hermitean
random matrices (GinOE, GinUE, GinSE) help elucidate
universal aspects of the phenomenon of spontaneous chiral
symmetry breaking in quantum chromodynamics [12]: the
presence or absence of real eigenvalues singles out differ-
ent breaking patterns. More recent findings [13] associate
statistical models of non-Hermitean normal random matri-
ces with integrable structures of conformal maps and inter-
face dynamics at both classical [14] and quantum scales
[15]. For a comprehensive review of these and other physi-
cal applications, the reader is referred to Ref. [3].

Out of the three non-Hermitean matrix models [1],
Ginibre’s orthogonal ensemble defined by the probability
density PGinOE�H � � �2��

�n2=2 exp��tr�HH T=2�� for
an n� n real matrix H to occur is the least studied and
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the most challenging. Perhaps, the great difficulties faced
in statistical analysis of the GinOE can be attributed to the
fact that its generically complex spectrum �w1; . . . ; wn�
may contain a finite fraction of real eigenvalues. This
very peculiar feature of GinOE can conveniently be ac-
commodated by dividing the entire space T�n� spanned by
all real n� n matrices H 2 T�n� into �n� 1� mutually
exclusive sectors T�n=k� associated with the matrices
having exactly k real eigenvalues, such that T�n� �Sn
k�0 T�n=k�. The sectors T�n=k�, characterized by the

partial probability densities PH2T�n=k��w1; . . . ; wn�, can
be explored separately because they contribute additively
to the joint probability density function (JPDF) of all n
eigenvalues of H from T�n�:

Pn�w1; . . . ; wn� �
Xn
k�0

PH2T�n=k��w1; . . . ; wn�: (1)

Two spectral characteristics are of particular physical in-
terest: (i) the partial �r1; r2�-point correlation functions
obtained by integrating out all but r1 real and r2 complex
eigenvalues in PH2T�n=k�, and (ii) the probability

pn;k �
Yk
i�1

Z
R
d�i

Y‘
j�1

Z
R
dRezj

Z
R�
d ImzjPH2T�n=k�

(2)

to find exactly k real eigenvalues in the spectrum of GinOE
that additionally contains ‘ pairs of complex-conjugated
eigenvalues, so that n � k� 2‘. The probability function
pn;k is the central object of our study, which, if considered
in a wider context, aims to highlight an exclusive role
played by symmetric functions in the description of
GinOE.

The most important and general result available for
GinOE is due to the breakthrough work by Lehmann and
Sommers [16], who proved, a quarter of a century after
Ginibre’s work, that the kth partial JPDF (0 	 k 	 n)
equals [17]
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In writing (3), we have used a representation due to
Edelman [18], who rediscovered the result [16] a few years
later. The above JPDF is supported for ��1; . . . ; �k� 2 Rk,
�Rez1; . . . ; Rez‘� 2 R‘, and �Imz1; . . . ; Imz‘� 2 �R

��‘. A
particular case k � n of (3), corresponding to the matrices
H 2 T�n=n� with all eigenvalues real, was first derived
by Ginibre [1].

Equations (1) and (3) solve the problem of finding the
JPDF of all n eigenvalues in GinOE. Despite this tremen-
dous progress, a calculation of the �r1; r2�-point correlation
function based on (3) turns out to be the problem, particu-
larly, because the well-developed machinery [2] of RMT,
which was at use in studies of complex eigenvalue corre-
lations in GinUE [1] and GinSE [19,20], fails to work in
this case. In particular, the famous Dyson integration theo-
rem [21] (Theorem 5.1.4 in Ref. [2]) is no longer applicable
to the study of spectral statistics in GinOE, as will be
reasoned below. This failure clearly signals of novel
mathematical structures lurking behind (3).

To unveil and explore these structures, we wish to con-
centrate on the probability function pn;k. Previous attempts
by Edelman and co-workers [18,22] to attack the problem
brought no explicit formula for pn;k for generic k. The
analytic results currently available include (i) the proba-
bility of having all n eigenvalues real equals [18] pn;n �
2�n�n�1�=4 (this is the smallest probability out of all pn;k);
(ii) for all 0 	 k 	 n, the pn;k is of the form [18] pn;k �
rn;k � sn;k

���
2
p

, where rn;k and sn;k are rational; (iii) the
expected number En �

Pn
k�0 kpn;k of real eigenvalues is

given by [22]

En �
1

2
�

���
2
p

2F1�1;�1=2; n; 1=2�

B�n; 1=2�
: (4)

Main results.—The following four statements summa-
rize the new results reported in this Letter.

Statement 1. The probability pn;k of exactly k real ei-
genvalues occurring equals

pn;k � pn;n�2‘ � pn;nF ‘�p1; . . . ; p‘�: (5)

The universal multivariate polynomials

F ‘�p1; . . . ; p‘� � ��1�‘
X
j�j�‘

Yg
j�1

1

�j!

�
�
p‘j
‘j

�
�j

(6)

are exclusively determined by the partitions � of the size
j�j � ‘, where ‘ is the number of pairs of complex-
conjugated eigenvalues. Formula (6) uses a frequency
representation [23] of those partitions � � �‘�1

1 ; . . . ; ‘
�g
g �.

Experts in the theory of symmetric functions may readily
recognize that our F ‘’s are, up to a factorial, so-called
23020
zonal polynomials [24]:

F ‘�p1; . . . ; p‘� �
1

‘!
Z�1‘��p1; . . . ; p‘�: (7)

They are tabulated in the manuscript [25] by Jack and can
also be efficiently calculated [24] by recursion. On the
contrary, the arguments pj’s of the multivariate polyno-
mials in (5) are matrix model dependent:

pj � tr�0;�n=2��1�%̂j: (8)

(The notation �x� stands for the integer part of x.) The
nonuniversal matrix %̂ is sensitive to the parity of n. For
n � 2m even, its entries are

%̂even
�;� �

Z 1
0
dyy2������1ey

2
erfc�y

���
2
p
�

� ��2�� 1�L2������1
2��1 ��2y2�

� 2y2L2������1
2��1 ��2y2��; (9)

while for n � 2m� 1 odd,

%̂ odd
�;� � %̂even

�;� � ��4�m��
m!

�2m�!
�2��!
�!

%̂even
�;m : (10)

Here, L�j �x� are generalized Laguerre polynomials.
We wish to stress that zonal polynomials Z�1‘� are the

integral part of the final solution (5), and not merely the
means of its derivation. This highlights a strong connection
between integrable structure of GinOE, integer partitions
(6), and the theory of symmetric functions (7).

Statement 2. The entire generating function for the
probabilities pn;n�2‘ can be reconstructed from (5). The
fairly compact result

Gn�z� �
X�n=2�

‘�0

z‘pn;n�2‘ � pn;n det�1�n=2� � z%̂�; (11)

with the %̂ of needed parity, provides us with yet another
way of computing the entire set of pn;k’s at once. For
comparison of our analytic predictions with numeric simu-
lations, see the Table I.

Statement 3. The previously unknown JPDF of ‘ pairs
of complex-conjugated eigenvalues of a matrix H 2
T�n=k� is given by the formula (15).

Statement 4. This statement is formulated in the form of
the Pfaffian integration theorem (17) below. (It is highly
likely that this theorem will have implications far beyond
the scope of the present Letter.)

Sketch of the derivation.—Because of the space limita-
tions, only key points of the derivation will be presented
below; the technical details will be reported elsewhere
[26].
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TABLE I. Exact solution for p12;k (second and third column)
compared to numeric simulations (fourth column) performed by
direct diagonalization of 1 000 000 of 12� 12 matrices.

k Exact solution Approximation Numerics

0 29 930 323 227 453�20 772 686 238 032
��
2
p

17 592 186 044 416 0.031 452 0.031 683

2 3�1 899 624 551 312
��
2
p
�2 060 941 421 503�

4 398 046 511 104 0.426 689 0.427 670

4 3�2 079 282 320 189�505 722 262 348
��
2
p
�

8 796 093 022 208 0.465 235 0.464 098

6 252 911 550 974
��
2
p
�27 511 352 125

4 398 046 511 104 0.075 070 0.075 021

8 15�1 834 091 507�10 083 960
��
2
p
�

17 592 186 044 416 0.001 552 0.001 526

10 3�1 260 495
��
2
p
�512�

2 199 023 255 552 0.000 002 0.000 002

12 1
8 589 934 592 0.000 000 0.000 000
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To determine the probability function pn;k, defined by
(2), we first integrate out all ��1; . . . ; �k� in (3), which can
be viewed as a hybrid of GOE [2] and GinSE [19,20]. The
most efficient way to do so is to spot that the first line in (3),
if taken without any prefactors therein, is proportional to
the average characteristic polynomial h

Q‘
j�1 det�zj�H��

det��zj�H�i of a k� k random matrix H drawn from the
GOE with the weight function exp��trH2=2�. It admits the
Pfaffian representation [27,28]
23020
k!

n!

cn=ck
�2‘�fz; �zg�

pf
Kn�zi; zj� Kn�zi; �zj�
Kn��zi; zj� Kn��zi; �zj�

" #
2‘�2‘

; (12)

with the constant ck � 2k=2k!
Qk
j�1 ��j=2� given by a GOE

Selberg’s integral [2]. The Vandermonde determinant
�2‘�fz; �zg� is calculated on the set of complex eigenvalues
�z1; . . . ; z‘; �z1; . . . ; �z‘�. The kernel function Kn�z; z0� in (12)
is a so-called D part [29] of the GOE matrix kernel [2] that
can be expressed [30] in terms of arbitrary monic poly-
nomials qj:

Kn�x; y� �
1

2

Xn�1

j;k�0

qj�x��̂jkqk�y�: (13)

The real antisymmetric matrix �̂ is determined by its
inverse

��̂�1�jk �
1

2

Z
R2
dxdye��x

2�y2�=2 sgn�y� x�qj�x�qk�y�:

(14)

Substituting (12) into (2) completes the � integration
therein, bringing a new result for the JPDF of ‘ pairs of
complex-conjugated eigenvalues of H 2 T�n=k�:
PH2T�n=k��z1; �z1; . . . ; z‘; �z‘� �
pnn
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: (15)

The structure of (15) mirrors that of the JPDF of all complex eigenvalues in the GinSE (see, e.g., Chap. 15.2 in Ref. [2], and
Ref. [20]), possibly triggering one to think that the remaining z integrations in (2) could readily be accomplished by virtue
of the Dyson integration theorem [2,21]. Sadly, this is not the case because the D part Kn�z; z0� of the GOE matrix kernel
does not obey the projection property in the complex planeZ

Imw>0
d��w�Kn�z; �w�Kn�w; z0� �

1

2
Kn�z; z0� (16)

with respect to the measure d��w� � erfc��w� �w�=i
���
2
p
� exp���w2 � �w2�=2�d2w from (15) (compare to the

Lemma 15.2.1 of Ref. [2]). Fortunately, the projection property is not actually necessary to carry out the integrations.
We were able to prove the following Pfaffian integration theorem [26].

Theorem.—Let d��z� be any benign measure on z 2 C, and the kernel function Kn�x; y� be an antisymmetric function
specified by (13). Then, the integration formula

�
2

i

�
‘Y‘
j�1

Z
zj2C

d��zj� pf
Kn�zi; zj� Kn�zi; �zj�
Kn��zi; zj� Kn��zi; �zj�
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2
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1

2
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(17)
holds, provided the integrals on the left-hand side exist.
The Pfaffian integration formula contains particular zo-

nal polynomials [24] Z�1‘�, whose arguments are traces of
�̂j with

�̂ �;� � i
Xn�1

k�0

�̂�;k

Z
d��z��qk�z�q���z� � q��z�qk� �z��:

(18)

Operationally, the proof [26] is based on a topological
interpretation of the permutational expansion of Pfaffian
in (17) combined with term-by-term integration.
Equipped with this theorem, we are ready to complete
the z integrations in (2). The calculation is most economic
in the basis where monic polynomials qj’s coincide with
GOE skew-orthogonal polynomials. For n � 2m even,
they are given by [2]

q2j�1�x� � 2��2j�1�H2j�1�x� � 2��2j�1�jH2j�1�x�;

q2j�x� � 2�2jH2j�x�;
(19)

so that

�̂ jk �
1� ��1�k

21�kk!
����
�
p �j;k�1 �

1� ��1�j

21�jj!
����
�
p �j;k�1: (20)
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Substituting (19) and (20) into (18), and taking into ac-
count (17), we reproduce the announced solution (5)–(9)
after a bit lengthy but straightforward calculations. The
case n � 2m� 1 odd can be treated similarly [26] leading
to the same solution but with (9) replaced by (10).

It remains to establish the result (11) for the generating
function Gn�z�. It stems from the summation formula

X1
r�0

zr

r!
Z�1r��p1; . . . ; pr� � exp

�X
r
1

��1�r�1 prz
r

r

�
(21)

well known in the theory of symmetric functions [24].
Identifying pr � tr�0;�n=2��1�%̂

r, the exponent in (21) can
be evaluated explicitly to confirm (11).

Conclusion.—To summarize, the exact solution was
presented for the probability pn;k to find precisely k real
eigenvalues in the spectrum of an n� n random matrix
drawn from GinOE. Expressed in terms of zonal polyno-
mials, the solution associates the integrable structure of
GinOE with the theory of symmetric functions.

Certainly, more work is needed to accomplish the spec-
tral theory of GinOE. (i) In particular, the large-n behavior
[26] of the probability function pn;k should be examined
when the number k of real eigenvalues does or does not
scale with the matrix dimension n. The large-n formulas of
this kind would facilitate a comparison of our exact theory
with existing experimental [8] and numerical (see the
second paper in Ref. [12]) data. (ii) The calculation of all
�r1; r2�-point correlation functions for GinOE as defined
below (1) is yet another important problem to tackle. We
believe that progress in this direction can be achieved
through a proper extension of the Pfaffian integration
theorem (17).
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