
PRL 95, 228701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
Diagnosis of Weaknesses in Modern Error Correction Codes: A Physics Approach
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One of the main obstacles to the wider use of the modern error-correction codes is that, due to the
complex behavior of their decoding algorithms, no systematic method which would allow characterization
of the bit-error-rate (BER) is known. This is especially true at the weak noise where many systems operate
and where coding performance is difficult to estimate because of the diminishingly small number of
errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in
the weak noise range by recasting it as a computationally tractable minimization problem.
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Modern technologies, as well as many natural and so-
ciological systems, rely heavily on a wide range of error-
correction mechanisms to compensate for their inherent
unreliability and to ensure faithful transmission, process-
ing, and storage of information. There has been a great deal
of recent research activity in coding theory that has culmi-
nated in the recent discovery of coding schemes [1–3] that
approach a reliability limit set by classical information
theory [4]. The problem considered in this Letter is of a
special interest because of a unique feature of the modern
coding schemes, which is referred to as an error floor [5,6].
Error floor is a phenomenon characterized by an abrupt
degradation of the coding scheme performance, as mea-
sured by the bit-error-rate (BER), from the so-called water-
fall regime of moderate signal-to-noise ratio (SNR) to the
absolutely different error-floor asymptotic achieved at high
SNR. To estimate the error-floor asymptotic in the modern
high-quality systems is a notoriously difficult task. Typical
required BER values are 10�12 for an optical communica-
tion system, 10�15 for hard drive systems in personal
computers. However, direct numerical methods, e.g.,
Monte Carlo simulations, cannot be used to determine
the BER below 10�9.

To address this challenge we suggest a physics-inspired
approach that ultimately solves the problem of the error-
floor analysis. The method is coined the ‘‘instanton’’
method, after a theoretical particle in quantum physics
that lasts for only an instant, occupying a localized portion
of space-time [7]. Statistical physics uses the word instan-
ton to describe a microscopic configuration which, in spite
of its rare occurrence, contributes most to the macroscopic
behavior of the system [8]. Our instanton is the most prob-
able configuration of the noise to cause a decoding error.

We consider a model of a general communication sys-
tem with error correction [4]. Data originating from an
information source are parsed into fixed length words.
Each word is encoded into a longer code word and trans-
mitted through a noisy channel (e.g., a radio or optical link,
a magnetic or optical data storage system, etc.). The de-
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coder tries to reconstruct the original code word using the
knowledge of the noise statistics and the structure of the
code. Error resilience is achieved at the expense of intro-
duced redundancy, and information theory gives conditions
for the existence of finite redundancy error-correction co-
des. However, it does not give a method for realizing
decoders of low complexity. There is no better way to
reconstruct the code word that was most likely transmitted
than to compare the likelihoods of all possible code words.
However, this maximal likelihood (ML) algorithm be-
comes intractable already for code words that are tens of
bits long.

A novel exciting era has started in coding theory with the
discovery of low-density parity check (LDPC) [1,3,9,10]
and turbo [2] codes. These codes are special, not only
because they can approach very close to the virtually
error-free transmission limit, but mainly because a compu-
tationally efficient, so-called iterative, decoding scheme is
readily available. When operating at moderate noise values
these decoding algorithms show an unprecedented ability
to correct errors, a remarkable feature that has attracted a
lot of theoretical attention [5,6,11–14]. (Notice also statis-
tical physics-inspired approach [15] that offered an impor-
tant insight into the extraordinary performance of the
iterative decoding [16–18].) It is believed that the error
floor is a consequence of iterative decoding, and that the
approximate algorithms mentioned above are incapable of
matching the performance of ML decoding beyond the
error-floor threshold. The importance of error-floor analy-
sis was recognized in the early stages of the turbo codes
revolution [19], and it soon became apparent that LDPC
codes are also not immune from the error-floor deficiency
[6,20]. The main approaches to the error-floor analysis
problem proposed to date include: (i) a heuristic approach
of the importance sampling type [6], utilizing theoretical
considerations developed for a typical randomly con-
structed LDPC code performing over the very special
binary-erasure channel [21], and (ii) deriving lower bounds
for BER [22].
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Our approach to the error-floor analysis is different: we
suggest an efficient numerical scheme, which is ab initio
by construction, i.e., the scheme requires no additional
assumptions (e.g., no sampling). The numerical scheme
is also accurate at producing configurations whose validity,
as of actual optimal noise configurations, can be verified
theoretically and that provide a tight lower bound for BER.
Finally, the instanton scheme is also generic, in that there
are no restrictions related to the channel or decoding.

Error-correction scheme.—A message word consisting
of K bits is encoded in an N-bit long code word, N >K. In
the case of binary, linear coding, a convenient representa-
tion of the code is given by M � N � K constraints, often
called parity checks or simply, checks. Formally, � �
��1; . . . ; �N� with �i � �1, is one of the 2K code words
if and only if

Q
i2��i � 1 for all checks � � 1; . . . ;M,

where i 2 � if the bit i contributes the check �. The
relation between bits and checks (we use i 2 � and � 3
i interchangeably) is often described in terms of theM� N
parity-check matrix Ĥ consisting of ones and zeros: H�i �
1 if i 2 � and H�i � 0 otherwise. A bipartite graph rep-
resentation of Ĥ, with bits marked as circles, checks
marked as squares, and edges corresponding to respective
nonzero elements of Ĥ, is usually called the Tanner graph
of the code. For an LDPC code, Ĥ is sparse, i.e., most of
the entries are zero. Transmitted through a noisy channel, a
code word gets corrupted due to the channel noise, so that
the channel output (receiver) is x � �. Even though infor-
mation about the original code word is lost at the receiver,
one still possesses the full probabilistic information about
the channel; i.e., the conditional probability, P�xj� 0�, for a
code word � 0 to be a preimage for the output word x, is
known. In the case of independent noise samples the full
conditional probability can be decomposed into the prod-
uct, P�xj� 0� �

Q
ip�xij�

0
i�. A convenient characteristic of

the channel output at a bit is the so-called log-likelihood,
hi � log�p�xij 	 1�=p�xij � 1�
=2s2, measured in the
units of the SNR squared, s2. (In the physics formulation
[15–18], h is called the magnetic field.) For a common
model of the white Gaussian symmetric channel, p�xj�� �

exp��s2�x� ��2=2
=
�������������
2�=s2

p
(the example discussed in

the Letter) hi � xi. The decoding goal is to infer the
original message from the received output x. ML decoding
(that generally requires an exponentially large number 2K

of steps) corresponds to finding the maximum argument of
P�xj� 0� with respect to all possible � 0, i.e., the most
probable transmitted code word given x. Belief propaga-
tion (BP) decoding [1,3,9,18] constitutes a fast (linear in
K;N), yet generally approximate alternative to ML. As
shown in [1] the set of equations describing BP becomes
exactly equivalent to the so-called symbol maximum
a posteriori (MAP) decoding in the loop-free approxima-
tion (a similar construction in physics is known as the
Bethe-tree approximation [23]), while in the low-noise
limit, s! 1, ML and MAP become indistinguishable
and the BP algorithm reduces to the min-sum algorithm:
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��n	1�
i� � hi 	

X�3i
���

Yj2�
j�i

sgn���n�j� 
min
j2�

j�i
j��n�j� j; (1)

where the message field ��n�i� is defined on the edge be-
tween bit i and check � at the nth step of the iterative
procedure and ��0�i� � 0. The result of decoding is deter-
mined by magnetizations, m�n�i , defined by the right-hand
side of Eq. (1) with the restriction � � � dropped. The
BER at a given bit i becomes

Bi �
Z
dx���mifxg�P�xj1�; (2)

where ��z� � 1 if z > 0 and ��z� � 0 otherwise; � � 1 is
assumed for the input ( in a symmetric channel the BER is
invariant with respect to the choice of the input).

We aim to find optimal configuration of the output x,
called instanton, xinst, maximizing P�xj1�. The integrand in
Eq. (2) decays fast and monotonically with output configu-
rations x moving away from 1, guaranteeing that the
optimal configuration sits on the error surface, mifxg �
0. When the BER is small the integral in Eq. (2) is ap-
proximated as Bi � P�xinstj1�. For the Gaussian channel
finding the instanton, ’inst � 1� xinst � l�u�u, turns into
minimizing the length l�u�with respect to the unit vector u,
where l�u�measures the distance from the zero-noise point
to the point on the error surface corresponding to u.

Finding the instanton numerically.—In our numerical
scheme, the value of the length l�u� for any given unit
vector uwas found by the bisection method. The minimum
of l�u�was found by a downhill simplex method also called
‘‘amoeba’’ [24], with accurately tailored annealing. The
numerical instanton method was first successfully verified
in [25] against analytical loop-free results.

Our demonstrative example is the (155, 64, 20) LDPC
code described in [26]. (The parity-check matrix of the
code is shown in Fig. S1 of [27].) The code includes
155 bits and 93 checks. Each bit is connected to three
checks, any check is connected to 5 bits. The minimal
Hamming distance of the code is l2ML � 20, i.e., at s

1, and if the decoding is ML, Bi � exp��20� s2=2�. (See
Fig. S2 of [27] for a Monte Carlo evaluation of the BER vs
SNR.) We aim to find and describe the instanton(s) that de-
termine the BER in the error-floor regime (for min-sum de-
coding):� exp��l2ef � s

2=2� with l2ef < l2ML � 20. Our nu-
merical, and subsequent theoretical, analyses suggest that
the instantons, as well as lef , do depend on the number of
iterations. We do not detail this rich dependence here,
focusing primarily on the already nontrivial case of four
iterations.

The instanton with the minimal length of l2a �
462=210 � 10:076 is shown in the upper part of
Fig. 1(a), see also Fig. S3 of [27]. Everywhere away
from the 12-bit pattern the noise is numerical zero. The
resulting nonzero noise values are proportional to integers
(within numerical precision). If decoding starts from the
instanton configuration of the noise, magnetization is ex-
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actly zero at the bit number 77. This minimal length
instanton controls BER at s! 1, however, for any large
but finite s one should also account for many other ‘‘close’’
instantons with l�u� � la, thus approximating Bi �P

instP�xinstj1�. The two instanton configurations shown in
Fig. 1(b) and 1(c) represent two local minima l2b �
806=79 � 10:203 and l2c � 442=188 � 10:298, respec-
tively, which are the closest to the minimal one. (See also
Figs. S4–S5 of [27].) These instantons were found as a
result of multiple attempts at amoeba minimization.

Interpretation of the instantons found.—The remarkable
integer/rational structure of the instantons found numeri-
cally by amoeba admits a theoretical explanation. Our
algebraic construction generalizes the computational tree
approach of Wiberg [12]. The computational tree is built
by unwrapping the Tanner graph of a given code into a tree
from a bit for which we would like to determine the
probability of error. (The erroneous bit is shaded in
Fig. 1.) The number of generations in the tree is equal to
the number of BP iterations (for more details see [11]). As
observed in [12], the result of decoding at the shaded bit of
the original code is exactly equal to the decoding result in
the tree center. Any check node processes messages com-
ing from the tree periphery in the following way: (i) the
message with the smallest absolute value (we assume no
degeneracy in the beginning) is passed, (ii) the source bit of
the smallest message is colored, and (iii) the sign of the
product of inputs is assigned to the outcome. At any bit that
lies on the colored leaves-to-center path the incoming
messages are summed up. The initial messages at any bit
of the tree are magnetic fields and, therefore, the result
obtained in the tree center is a linear combination of the
magnetic fields with integer coefficients. The integer ni
corresponding to bit i of the original graph is the sum of the
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FIG. 1 (color online). Parts of the full Tanner graph with no
(b) degenerate, and (c) sign-alternating pseudocode words, are show
left and bottom diagrams bits are numbered according to the (155, 64
symmetry transformation of the code. The numbers appearing on t
(a) �1� xi� � 210=46, (b) �1� xi� � 79=18, (c) �1� xi� � 188=44.
participate in the pseudocode word and the shaded bit marks the er
points of (b) degeneracy and of (c) sign alternation.
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aforementioned signs over all colored replicas of i on the
computational tree. Therefore, the condition at the tree
center becomes

P
inihi � 0. Returning to the original

graph and maximizing the integrand of Eq. (2) with the
condition enforced, we arrive at the following expressions
for the instanton configuration and the effective weight:

’j�nj

�X
i

ni

���X
i

n2
i

�
; l2�

�X
i

ni

�
2
��X

i

n2
i

�
; (3)

where the equation applies to the Gaussian channel, how-
ever its generalizations to any other channel is straightfor-
ward. One can check directly [e.g., looking at Fig. 1(a)],
that Eqs. (3) are satisfied for the minimum weight instan-
ton. In this case we find that the signature of any colored
message before and after processing through a check re-
mains intact, and thus the resulting ni for any colored bit is
just a total number of the bit’s replicas. The structure of this
instanton is exactly equivalent to one of the code words on
the computational tree, called a pseudocode word as ge-
nerically it does not correspond to a code word on the
original graph [12]. Equation (3) also suggests another
possibility that goes beyond the standard pseudocode
word construction [12]. In the case shown in Fig. 1(c) the
colored part of the tree does correspond to a pseudocode
word (by structure), however, the pale part of the computa-
tional tree cannot be neglected as the noise values at these
nodes are nonzero. This peculiarity is due to the fact that
some of the checks shown in the upper part of Fig. 1(c) are
connected to more than two colored bits. One finds that the
signature of the message propagating from bit 75 to bit 127
alternates because of the pale 0 lying on a leaf, 8=47 �
jh0j> jh75j � 3=47, h0 � �8=47< 0. This modifies n75

making it equal to 4, as one of the 6 replicas of the bit 75
contributes to the total count �1 instead of 	1. Moreover,
(c)
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, 20)-code definition, where the numbering is fixed up to the full
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FIG. 2. Interpretation of the instanton as a median within a set
of pseudocode words. Three panels show the set of pseudocode
words for the three instantons described in Fig. 1. Bits on the
computational tree painted in white and black correspond to
	1=� 1. Other notations and marks are in accordance with the
captions of Fig. 1.
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looking at Fig. 1(b) one finds that the instanton can be even
more elaborate as the number of replicas for some bits
becomes fractional. (‘‘	’’ sign on Fig. 1(b) corresponds to
	7=18.) This is actually the degenerate case with a colored
structure bifurcating at a check (connected to the bits 0, 77,
and 36), so that the messages entering the check from two
distinct periphery have different signatures but are exactly
equal to each other by the absolute value, h0 � �h77 �
18=79. Equation (3) does not work for this case, but the
following generalization corrects the problem: one needs
to introduce an additional condition accounting for the
degeneracy. In our example this extra condition can be
simply stated as h0 � �h77. (See Fig. S6 of [27].)

Instantons also allow for a complementary interpreta-
tion. A decoding error occurs when the magnetization in
the computational tree center, which can be considered
as a sum over all pseudocode words weighted by,
exp�s2P

ihipi�, turns to zero (with pi being the number
of bit i replicas with the �1 sign in the pseudocode word).
In the case of high SNR the sum is dominated by the
pseudocode words of maximal weight. Therefore, any in-
stanton, as a configuration of magnetic fields, should be
equidistant from some set of k � 2 pseudocode words:P
ihip

�1�
i � � � � �

P
ihip

�k�
i , where at least one of them

has a 	1 value and at least one has a �1 value in the
tree center to achieve zero magnetization. And indeed the
set of relevant pseudocode words shown in Fig. 2 is a pair
in the cases (a),(c) and a triple in the case (b). (See [27] for
details.)

To conclude, we demonstrated that the instanton ap-
proach is a very powerful and practical instrument for
quantitative analysis of the error floor. The success makes
us confident that this novel method will be indispensable
for design of new error-correcting schemes.
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