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Optimized Interactions for Targeted Self-Assembly: Application to a Honeycomb Lattice
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We devise an inverse statistical-mechanical methodology to find optimized interaction potentials that
lead spontaneously to a target many-particle configuration. Target structures can possess varying degrees
of disorder, thus extending the traditional idea of self-assembly to incorporate both amorphous and
crystalline structures as well as quasicrystals. For illustration purposes, our computational technique is
applied to yield an optimized isotropic (nondirectional) pair potential that spontaneously yields the three-
coordinated honeycomb lattice as the ground state structure in two dimensions. This target choice is
motivated by its three-dimensional analog, the diamond lattice, which is known to possess desirable
photonic band gap properties.
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‘‘Self-assembly’’ typically describes processes in which
entities (atoms, molecules, aggregates of molecules, etc.)
spontaneously arrange themselves into a larger ordered and
functioning structure. Biology offers wonderful examples,
including the spontaneous formation of the DNA double
helix from two complementary oligonucleotide chains, the
formation of lipid bilayers to produce membranes, and the
folding of proteins into a biologically active state.
Molecular self-assembly is a potentially powerful method
to fabricate atomically precise materials and devices.
Whitesides and Grzybowski [1] have produced intricate
2D patterns via self-assembly of organic molecules on an
inorganic surface. Jenekhe and Chen [2] have devised
‘‘smart plastics’’ that assemble into photonic crystals.
Stellacci et. al. [3] have assembled gold nanowires by
functionalizing nanoparticles with organic molecules.
Manoharan et. al. have self-assembled unique, small clus-
ters of microspheres [4]. These examples provide glimpses
into the materials science of the future, i.e., devising build-
ing blocks with specific interactions that can self-organize
on a set of larger length scales. Theoretical work has
mainly focused on finding the structure and macroscopic
properties of many-body systems given the interactions—
what we refer to as the ‘‘forward’’ problem of statistical
mechanics. The forward problem has been extensively
studied in the context of the freezing transition both ana-
lytically [5] and numerically [6], and more recently by
Kamien [7], who uses geometric arguments to obtain crys-
tal entropy.

The purpose of this Letter is to introduce an inverse
statistical-mechanical methodology to find optimized in-
teraction potentials that lead spontaneously to a target
many-particle configuration. The so-called ‘‘reverse’’
Monte Carlo (MC) method [8,9] has been used to obtain
interactions in liquids given the pair correlation function,
which only has partial configurational information. Our
inverse methodology distinguishes itself in that we apply
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it to self-assembly of a given N-particle configuration,
which may be crystalline, quasicrystalline, or amorphous.
We envision target structures possessing varying degrees of
disorder, which enables us to extend the traditional idea of
self-assembly.

The idea of tailoring potentials to generate targeted
structures is motivated by the rich array of fundamental
issues and questions offered by this fascinating inverse
statistical-mechanical problem as well as our recent ability
to identify the structures that have optimal or desirable
bulk properties. The latter includes novel crystal structures
for photonic band gap applications [10], materials with
negative or vanishing thermal expansion coefficients
[11], materials with negative Poisson ratios [12], materials
with optimal transport and mechanical properties [13], and
mesoporous solids for applications in catalysis, separa-
tions, sensors, and electronics [14].

Colloids are the ideal system to test our optimized
potentials, since both repulsive and attractive interactions
can be experimentally manipulated (e.g., via depletion
forces, dipole-dipole interactions, electrostatic interac-
tions, etc., [15]) and therefore offer a panoply of possible
potentials that far extends the range offered by molecular
systems.

Because there is a vast class of many-body potentials,
we will focus on isotropic pairwise additive interactions for
simplicity here. There are many open questions even for
this simple class of potentials. For example, the limitations
of isotropic pairwise additivity for producing target struc-
tures are not known. We know that such interactions cannot
produce thermodynamically stable chiral structures with a
specified handedness; equal amounts of left-handed and
right-handed structures would result. When is anisotropy in
the potential required? An answer based on intuition from
molecular systems would fail here. For instance, the dia-
mond lattice is thought to require directional interactions
because such structures found in Nature result from cova-
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http://dx.doi.org/10.1103/PhysRevLett.95.228301


PRL 95, 228301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
lent bonding. In fact, it is not known whether a diamond
lattice could be created from an isotropic pair potential.
This structure has a special status in photonics research
because a diamond lattice of dielectric spheres exhibits a
photonic band gap across the Brillouin zone [10].

The two-dimensional analog of this open three-
dimensional crystal is the three-coordinated honeycomb
lattice. Accordingly, our general optimization procedure
(described below) will be illustrated by applying it to
produce an optimized circularly symmetric pair potential
V�r� that spontaneously yields the honeycomb lattice as the
ground state (zero-temperature) structure in a positive
density range. In contrast to previous approaches that
have claimed to produce open lattice structures, our pro-
cedure incorporates the phonon spectrum, which is a cru-
cial ingredient. Because the honeycomb is an open lattice
that is a subset of the triangular lattice, it is inherently
challenging to assemble using isotropic potentials. Indeed,
such a potential has never been found before.

The potential energy for a system of N classically inter-
acting particles at positions rN � r1; r2; . . . ; rN in the ab-
sence of an external field is given by

��rN� �
X
i<j

V2�ri; rj� �
X
i<j<k

V3�ri; rj; rk� � � � � (1)

where the Vn’s are n-body potentials. In this study, we
consider only isotropic pair potentials and therefore

��rN� �
X
i<j

V�jri � rjj�: (2)

A central feature of our inverse approach is a computa-
tional algorithm that searches for and optimizes a func-
tional form for V�r� that leads to self-assembly of a given
target structure. To find an optimized V�r� for a given
target structure, we make an initial guess for that function.
We require that this initial potential have real frequencies
for each of its normal modes (for a lattice, this means real
phonon frequencies for all wave vectors in the Brillouin
zone). Thus, the structure is mechanically stable at zero
temperature. We then parametrize the potential, establish-
ing a family of functions V�r; fa0 . . . ang� of which our
initial guess is a member. The parametrization must be
chosen so that an overall rescaling is not possible. For each
ai, we choose a range of values that it can take, namely
�amin
i ; amax

i 	. We then optimize this family of functions for
self-assembly. Specifically, the program runs a molecular
dynamics simulation (MD) at volume (or area) per particle
�, initially in the target structure configuration and inter-
acting via the initial guess potential. The initial root mean
square speed in the MD corresponds to about 90–95% of
the melting temperature, where the system is in a non-
harmonic regime and liquid nucleation and/or structural
phase transition is beginning to set in. The root mean
square deviation from the target structure, defined as
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X
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�ri � r�0�i �
�

2
s

; (3)
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is computed and averaged over a number of simulations.
Here ri is the position of the ith particle after an appro-
priate amount of simulation time, r�0�i is its initial position,
and N is the number of particles. The quantity L is thus
minimized in parameter space by simulated annealing. The
program outputs the set of parameter values that corre-
sponds to the minimum value of L, presumably giving the
potential that best suppresses liquid nucleation and/or a
possible structural phase transition. This is the idea of the
algorithm: we postulate that if the potential is modified in
such a way that deformations of the target structure are
suppressed near (but below) the phase coexistence region,
the structure will self-assemble from a random configura-
tion in a MC simulation. In the case that the melting
temperature rises significantly over the course of the opti-
mization, the initial temperature can be increased such that
the system again approaches coexistence. A more detailed
description of this optimization procedure, as well as a
different one, will be given in Ref. [16].

We now apply our methodology to obtain an optimized
circularly symmetric interparticle potential, V�r�, that will
spontaneously favor the self-assembly of randomly placed
particles in two dimensions into the honeycomb lattice
upon simulated annealing from high to zero temperature.
A claim was made that the honeycomb lattice was favored
by a hard-core plus linear-ramp potential for certain pa-
rameter values [17], but we have now shown conclusively
that this is not possible because the phonon spectra of such
V�r� have imaginary frequencies. Thus, it would be a
significant accomplishment for our procedure if it as-
sembled the honeycomb lattice.

For lattice self-assembly, we make another restriction on
the initial function: that the target should be energetically
favored among the four principal 2D lattices, (the triangu-
lar, square, honeycomb and kagomé) over a significant
range of area per particle �. This is the second of our
two necessary conditions for lattice self-assembly, the first
being that all phonon frequencies are real.

Both the triangular and honeycomb lattices have their
first near neighbors (in relative distances) at 1,

���
3
p

, and 2.
The coordination numbers for those neighbors are 6, 6, 6
and 3, 6, 3 for the triangular and honeycomb lattices,
respectively. Thus, we choose a potential V�r� such that
V�1� is not negative, or else there will be a tendency to
accumulate as many neighbors as a lattice will permit, and
hence it will fall into the triangular lattice. Yet if there is no
local minimum at the nearest neighbor distance, the me-
chanical stability (phonons) will almost certainly be re-
moved (as we have found after trial and error). This
motivates the choice of the family of functions

V�r;A; �� �
5

r12 �
6

r10 � A�
2e��r: (4)

This is not the function that is finally given to the
optimization program; here, we are still approximating
the potential form. This is just a Lennard-Jones–type
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FIG. 1. 500-particle annealed MC results at specific area � �
1:45 for a potential with parameters displaced from those given
by Eq. (5).
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FIG. 2. The optimized pair potential V�r� specified by Eq. (6)
for honeycomb-lattice self-assembly.
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interaction (12=10 rather than 12=6) added to a soft repul-
sive exponential tail that is normalized to 2�A in 2D
regardless of the value of �. We choose the (12=10)
Lennard-Jones because it is more sharply distinguished
from the exponential tail than is the (12=6). It also has its
minimum at unity and has unit depth. For certain choices of
A and �, this potential has one local minimum but with a
positive value. To find the best values for A and � to
stabilize the honeycomb, we choose an � at which the
honeycomb nearest neighbor is at unit distance and we
maximize the interstitial hopping energy (both local and
distant) of just the exponential term over � at a given A. We
can then set a lower bound on the value of A by constrain-
ing the potential to have a positive hopping energy (hop-
ping into honeycomb interstitial sites is unfavorable). A
qualitative upper bound is set on A just by the need for
mechanical stability: for large enough values of A, this
potential becomes purely repulsive and the honeycomb is
mechanically unstable with it. So A is chosen to be its
lower bound. This procedure gave the values A � 3:0 and
� � 2:677. The resulting potential gave favorable lattice
sums but still imaginary phonon frequencies, so in order to
‘‘brace’’ the lattice, an attractive Gaussian function was
added, and so we use the parametrization

V�r;a0; a1; a2; a3� �
5

r12�
a0

r10�a1e
�a2r� 0:4e�40�r�a3�

2
:

(5)

For parameter values a0 � 6:0, a1 � 21:5, a2 � 2:677,
and a3 � 1:829, the guess potential meets our two neces-
sary conditions. A 500-particle annealed MC simulation
using this potential produced a lattice reminiscent of the
honeycomb, but with a significant number of defects in the
ground state.

In order to demonstrate the effectiveness of the optimi-
zation program, we somewhat arbitrarily displaced the
parameters from the initial guess function defined by
Eq. (5), setting them to be a0 � 6:5, a1 � 18:5, a2 �
2:45, a3 � 1:83. The resulting 500-particle annealed con-
figuration, shown in Fig. 1, is clearly far from the target
structure. We then started the optimization program with
these values for the parameters, the output of which was the
following potential:

V�r� �
5

r12 �
5:89

r10 � 17:9e�2:49r � 0:4e�40�r�1:823�2 : (6)

This function is plotted in Fig. 2. The phonon spectrum
is given in Fig. 3. The lattice sums (not shown there but
given in Ref. [16]) demonstrate that while the honeycomb
is stable over a wide range of �, the triangular lattice
eventually dips below it. The global energy minimum for
the triangular lattice occurs at the specific area for which its
nearest neighbor is at the second minimum in V�r� caused
by the Gaussian function. As long as there is an attractive
Gaussian function in V�r�, there is no avoiding this effect.
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However, it has little relevance for the lattice self-
assembly, since it is at relatively high �.

Monte Carlo simulated annealing was carried out on a
500-particle system (at � � 1:45) interacting via the po-
tential shown in Fig. 2 [cf. (6)]. The resulting configuration
is depicted in Fig. 4. Except for a few defects, the honey-
comb has indeed self-assembled. The defects actually
seem to be ‘‘missing particles,’’ rather than dislocations
or pockets of disordering. One might expect that increasing
the number of particles to fill the defects (or adjusting �
accordingly) would eliminate the defects, but this is not the
case. The defects are likely due to the slow dynamics of the
MC simulation; i.e., they were ‘‘frozen in’’ during anneal-
ing. According to the lattice sums, the perfect honeycomb
lattice is lower in energy than the one produced in the MC
simulation with defects.

We have found that as long as the salient features of the
honeycomb potential are kept (two local minima at dis-
tance ratio

���
3
p

, the first being positive and the second
negative), self-assembly is unaffected by perturbations in
the potential; i.e., the potential is robust. This is essential if
this system is to be tested experimentally.

In summary, using an inverse statistical-mechanical ap-
proach, we have found an optimized isotropic pair poten-
tial that results in the self-assembly of the targeted honey-
comb lattice. In many nanoscopic systems, experimental-
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FIG. 4. 500-particle MC results for the optimized potential
annealed depicted in Fig. 2 from kBT � 0:22 to kBT � 0 at
specific area � � 1:45.
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FIG. 3 (color online). Phonon spectrum (frequency squared)
for the optimized honeycomb potential depicted in Fig. 2 at
specific area � � 1:45.
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ists have increasingly greater control over intercomponent
interactions, and hence, optimal design of nanostructures
by self-assembly ultimately is always an inverse problem.
Our results give some hope to the possibility of self-
assembly of the more challenging diamond lattice with
isotropic pair potentials. As we indicated earlier, this
would have important implications for photonics devices.
We are currently searching for a parametrization that upon
optimization of an isotropic pair potential will yield the
diamond crystal as its ground state. Although the physics
of 3D systems can be qualitatively different from 2D, we
have already had success in stabilizing bcc and simple
hexagonal 3D lattices with isotropic potentials using our
optimization scheme. Note also that our methodology al-
lows us to minimize the occurrence of defects by max-
imizing their energy costs.

There are many fascinating research avenues that we can
explore using our inverse approach. Our results beg the
question of whether more exotic structures can be as-
sembled using only isotropic pair potentials. For example,
one might try to assemble a buckyball in a NVT annealing
simulation with 60 particles with a potential that has sharp
minima at the first several neighbor positions. Although we
do not know whether this is possible, we have already
found a potential that produces small clusters of particles
(e.g., simplices), as well as one that produces long chains,
or ‘‘colloidal wires’’ [16]. Clearly, there must be limits on
the types of structures that can be assembled using only
isotropic potentials. We know, for example, that chiral
structures with a target chirality cannot be formed, but
beyond this specific case we know very little about the
limitations of isotropic pair potentials: a fundamentally
important problem.

The optimization scheme proposed here is only one
approach to the inverse problem, and we expect that others
will be needed to search for interactions (isotropic or not,
additive or not) that stabilize general systems. Apart from
any particular algorithm, however, a central point of this
Letter is to propose the use of powerful inverse statistical-
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mechanical techniques to exquisitely control self-assembly
from the nanoscopic to microscopic scales.
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