
PRL 95, 226803 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
Quantum Interference of Electrons in a Ring: Tuning of the Geometrical Phase
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1Dipartimento di Scienze Fisiche Università degli studi di Napoli ‘‘Federico II ’’, Napoli, Italy
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We calculate the oscillations of the dc conductance across a mesoscopic ring, simultaneously tuned by
applied magnetic and electric fields orthogonal to the ring. The oscillations depend on the Aharonov-
Bohm flux and of the spin-orbit coupling. They result from mixing of the dynamical phase, including the
Zeeman spin splitting, and of geometric phases. By changing the applied fields, the geometric phase
contribution to the conductance oscillations can be tuned from the adiabatic (Berry) to the nonadiabatic
(Ahronov-Anandan) regime. To model a realistic device, we also include nonzero backscattering at the
connection between ring and contacts, and a random phase for electron wave function, accounting for
dephasing effects.
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In mesoscopic quantum devices, the wave functions of
charged particles may acquire a nonzero phase when
undergoing a closed path in a space threaded by external
fields. For instance, electrons traveling in an external mag-
netic flux � pick up an Aharonov-Bohm (AB) phase [1],
which can be readout from dc conductance oscillations in
an interference device [2]. Also, spin-orbit interaction
(SOI) couples orbital and spin electronic degrees of free-
dom, thus giving rise to an effective, momentum dependent
field, which adds a geometric (topological) [3,4] phase to
the electron wave function [5–8].

Recently, it has been shown that SOI can be controlled
by means of voltage gates in III-V semiconducting meso-
scopic structures (Rashba effect) [9–11]. This has aroused
a renewed interest in studying transport in ballistic rings, in
the presence of Rashba coupling [12–16]. Yet, it is still
controversial as to under which conditions the spin dynam-
ics adiabatically follows the orbital motion in a device like
this and whether the Berry phase can be detected in the
oscillations of the transmission altogether [17]. Also, it is,
up to now, still unclear what the possible consequences of
dephasing due to small fluctuations of the length of the
arms, or scattering at the connections between the device
and the leads.

In this Letter, we report extensive results concerning
ballistic quantum transport across a 1d ring, in the presence
of both an orthogonal magnetic field and of SOI. We
compute the dc conductance by means of the Landauer
formula [18] G � e2=@

P
��0 jA��; �0jE�j2, where

A��;�0jE� is the probability amplitude for an electron
entering the ring with energy E and spin polarization �0

to exit with spin polarization �. We employ a real-time
path integral approach [19], and we use the saddle point
approximation for the orbital motion (which singles out an
optimum constant velocity for the electron, _’). At each
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contact, the transmission is weighted with an amplitude
�teiz, and the reflection takes place with amplitude is �reiz,
where z is a stochastic variable with flat distribution in
���; ��, which encodes dephasing effects. Eventually, we
average N times over different dephasing realizations. The
winding in the ring before escaping provides the electron
propagator with an extra phase, which includes the com-
bined effect of ‘‘geometrical’’ and ‘‘dynamical’’ phases,
arising from AB, SOI, and Zeeman spin splitting (ZSS)
(proportional to the cyclotron frequency!c). Our approach
applies to any regime, either adiabatic, or nonadiabatic, as
the spin propagator is evaluated exactly. In the limiting
regimes, in which ZSS is either much larger, or much less,
than SOI, the dynamical and the geometrical phases can be
easily identified. The intriguing regime is the nonadiabatic
one, when ZSS and SOI are of comparable strength.

In Fig. 1(b), we plot the Fourier transform of the inter-
ference contribution to the dc conductance for three in-
creasing values of SOI (Fig. 3 [right panel]), with very little
back reflection at the connections between ring and leads,
and no dephasing (� � 0). In the absence of SOI (solid
line), we see only the peak corresponding to AB oscilla-
tions. At increasing SOI strength (dotted line), more struc-
tures appear, which eventually evolve into a four-peak
structure for a larger value of SOI (dashed line). The
four-peak feature confirms the interpretation by Yau
et al. [17] and supports the conclusion that the Berry phase
can be detected experimentally in similar devices. We
consider the dynamics of a spinful single electron injected
at the Fermi energy in a ring with equal arms [20], as
sketched in Fig. 1(a). In calculating the transmission in
an orthogonal electric and magnetic field, we neglect the
actual finite transverse dimension of the arms of the ring, as
this would alter the result only, quantitatively [21]. Our
model Hamiltonian is given by
3-1 © 2005 The American Physical Society
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where @l̂ � i@@’ is the angular momentum operator, ’ is
the orbital coordinate along the ring, and ~� are Pauli
matrices; � is a coupling constant, including the effect of
the electric field (in units of eV �A), kSOR � 4��0=�@R�,
where �0 � mR2=2@ is the time scale of orbital fluctua-
tions (note that !c � ���1�

0 �=�0). Since we are interested
in the transmission amplitude in time tf, A��f; tf;�0; 0�,
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FIG. 1 (color online). (a) Sketch of the device studied.
(b) Fourier transform of the conductance vs that of Fig. 3 [right
panel] for kSOR � 0; 20; 40. The variable conjugate to the mag-
netic flux �=�0 is in units of 2�.
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we sum over paths within homotopy classes, correspond-
ing to the electron winding n� 1=2 times in the ring (n�
1=2 is positive or negative, depending on whether the
electron path winds clockwise, or counterclockwise)
[22]. We assume ballistic quantum propagation at energy
E0 (referred to the Fermi energy of the contacts), which
requires integrating over all final times tf > 0. Accord-

ingly, the transmission amplitude for an electron entering
the ring at ’�0� with spin polarization �0 and exiting at
’�0� � �, with spin polarization �f, for a given realization
of the random phases is given by
A��f;�0jE0� � j�tj2
X1

n��1

Z 1
0
dtfj �rj2�jnj�1�ei

P
2jnj
j

zjeiE0t=@
Z ’�0����2n�1�

’�0�
D�’�h�f; tfje

i
R
tf
t0
dtL�’; _’;t�

j�0; 0i: (2)

The nth partial amplitude in Eq. (2) corresponds to summing over paths ’�t� satisfying the boundary conditions ’�tf� �
’�0� � ��2n� 1�. We take the transparency at the contacts to be such that backscattered trajectories which retrace back
part of the path can be neglected. This suppresses weak localization corrections [23] and Altshuler-Aronov-Spivak
oscillations [24]. The Lagrangian in Eq. (2) is given by:

L�’�t�; _’�t�; ~���
m
2
R2 _’2�t��
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: (3)
We now perform the saddle point approximation on the
orbital motion. Since in Eq. (2) the spin is still a quantum
operator, we derive the equation of motion for ’ within the
coherent state representation for spin variables (Haldane’s
mapping) [25]. The dynamics of the orbital coordinate ’
decouples from the spin dynamics, within saddle point
approximation:

d
dt

@L
@ _’�t�

�
@L
@’
� 0) mR2 �’�t� � 0: (4)
The solution of Eq. (4) satisfying the appropriate bound-
ary conditions and parametrized by the integer n is

’n�t� � ’�0� � sgn�n���2jnj � 1�
�
t
tf

�
: (5)

The ultimate formula for the transmission amplitude across
the ring is given by [26]

A��f;�0jE0��

��������
m

2 ~E0

s
j�tj2

X1
n�0;n��1

j �rj2�jnj�1�e
P

2jnj
j

zj

�ei�mR
2=2@tn����2jnj�1��2

�e�i��=�0����2jnj�1��sgn�n�eiE0tn=@

�ei�1��kSOR�2�tn=16�0h�fjÛcl�tn;0�j�0i; (6)

with ~E0 � E0 � @�1� �kSOR�
2�=16�0. In Eq. (6), the spin

dynamics is governed by the effective Hamiltonian
Ĥspin�t� � ~b�t� 	 ~�. Hspin�t� is parametrized by the angular
velocity of the electron rounding n� 1=2 times in the
ring, _’n, which is a constant, according to Eq. (5).
Hspin�t� is the Hamiltonian of a quantum spin, moving in

an effective time dependent external magnetic field ~b�t� �
�bz;b�;b��� �

@!c
2 ;kSOR@ _’nei’n�t�=2;kSOR@ _’ne�i’n�t�=2�.

Equation (6) contains the matrix elements of the spin
evolution operator Ucl�tf; 0� � T̂ exp��i

Rtf
0 Hspin�t�dt�,

(T̂ is the usual time-ordering operator), between states
with given spin polarization. Such a matrix element adds
a geometrical phase to the total amplitude. This phase
reduces to the usual Berry phase in the adiabatic limit [3].

To obtain Eq. (6) from Eq. (2) we have used the steepest
descent approximation. Within the nth topological sector,
3-2
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we find that the phase of the integrand is stationary at the

time tn � ���2jnj � 1��0�
����������������
@�0= ~E0

q
. Thus, we evaluate the

contribution of each term to the sum of Eq. (2) at t � tn.
Inserting Eq. (6) in the Landauer formula allows us to
compute the linear conductance across the ring.

In the right panel of Fig. 2, we plot the dc conductance vs
kSOR at �=�0 � 0 for different values of �r (different plots
within a single box), and at increasing phase randomness
(boxes from top to bottom with � � 0; �=3; �; 2�), aver-
aged over N � 1000 realizations. In the left panel, we plot
the dc conductance vs �=�0, for the same values of �r and
� , at kSOR � 0. In the right panel, we see that in the case of
ideal coupling, �r � 0, the quasiperiodic oscillation of the
conductance reproduces the localization conditions at the
expected values of kSOR [14–16]. For �r > 0, interference
involving winding numbers jn� 1=2j> 1 gives rise to
more complicated patterns: the average and the peak value
of the conductance decrease, when the transparency of the
barriers is lowered. The transmission is progressively re-
duced, when �r increases. Contributions from higher har-
monics, due to multiple reflections, only appear in the AB
oscillations, with maximum amplitude when�=�0 is close
to an integer, that is, when the constructive interference
condition is fulfilled.

We see that in both panels in Fig. 2 the amplitude of the
oscillations due to quantum interference are overall re-
duced by the same size, because of increasing � .
Eventually they are washed out for � � 2�.

In Fig. 3, we show the combined effect of B and SOI, on
the conductance as a function of �=�0 at E0 � 0 and �r �
0:05, at increasing values of kSOR (from bottom to top) for
� � 0 [right panel], and � � � [left panel]. From the right
panel, we see that the zero-flux value of the conductance
oscillates with increasing kSOR. Maxima and minima are
reduced by the dephasing, as it appears from the left panel,
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FIG. 2. Left panel: Conductance vs �=�0 at kSOR � 0, for
�r � 0; 0:2; 0:4; 0:6; 0:8 (different curves from top to bottom in
each box) and at increasing dephasing (parametrized by �).
Right panel: Conductance vs kSOR at �=�0 � 0, for the same
values of �r and � .
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since both constructive, as well as disruptive interference,
are suppressed. The results at the right panel are in ex-
cellent qualitative agreement with recent experiments [13].
Therefore, we infer that, in real samples the coupling
between the contacts and the leads is approximately ideal
(�r
 0) and the transport is quasiballistic.

The geometrical phase should be detectable as a modu-
lation of the interference term in the total dc conductance
across the ring, on top of the fundamental modulation due
to AB effect. Figure 1(b) shows the Fourier transform of
the patterns at the right panel of Fig. 3 for kSOR �
0; 20; 40. To get an insight concerning the appearance of
the four-peak feature at kSOR � 40, we may resort to the
adiabatic approximation for the conductance (kSOR _’�
!c), obtaining

X
��0
jA��;�0�j2 � 2� 2

X


�
cos2� cos

�
2�

�
�0
 � cos�

�

� sin2� cos
�
�
�
�0

�!c

_’

��
; (7)

where cos� � �1� �kSOR _’=!c�
2��1=2.

In the absence of SOI (� � 0), the former term reduces
to the usual AB-oscillating term, while the latter one
simply disappears. When SOI is � 0, but still much
smaller than ZSS, � weakly depends on �, so that two
small satellites appear at each side of the AB peak. For
kSOR � 40, the Berry phase becomes proportional to �.
Hence, the central AB peak splits into two, as seen in
Fig. 1(b). Also, since cos2��� decreases, while sin2���
increases, the amplitude of the outer peaks (associated to
ZSS) increases, while the amplitude of the inner peaks
(associated to Berry phase) decreases. Therefore, we infer
that the splitting of the AB peak into two is, in fact, an
evidence for the existence of a topological phase [17,27].
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FIG. 3. Right panel: Conductance vs �=�0 for increasing
values of SOI at � � 0 and �r � 0:05. Left panel: The same
plot as at the right panel, but for � � �.
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To conclude, we have employed a path integral real-
time approach to compute the dc conductance of a bal-
listic mesoscopic ring in both electrical and magnetic
fields. Our approach goes beyond other recent semiclassi-
cal calculations by allowing for nonideal couplings be-
tween ring and leads (with nonzero reflection �r) and for
dephasing effects. The results satisfactorily compare with
experiments.

By varying the external fields we can explore both the
adiabatic and nonadiabatic regime: the latter appears as
irregular wiggles in the middle of Fig. 3 [right panel]. For
large Rashba couplings and a weak magnetic field, spin flip
phenomena take place, due to the off-diagonal component
of the spin evolution matrix. We stress that kSOR � 30–40
corresponds to a SOI coupling �
 200 meV �A, in rings
with R
 1 �m, which can be presently achieved experi-
mentally. In this regime such devices can work as spin
filters.
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