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Quantum Spin Hall Effect in Graphene
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We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of
graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin
orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall
insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and
charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but
they are insensitive to disorder because their directionality is correlated with spin. The spin and charge
conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba
coupling, disorder, and symmetry breaking fields are discussed.
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The generation of spin current solid state systems has
been a focus of intense recent interest. It has been argued
that in doped semiconductors the spin orbit (SO) interac-
tion leads to a spin Hall effect [1,2], in which a spin current
flows perpendicular to an applied electric field. The spin
Hall effect has been observed in GaAs [3,4]. Murakami
et al. [5] have identified a class of cubic materials that are
insulators, but nonetheless exhibit a finite spin Hall con-
ductivity. Such a ‘‘spin Hall insulator’’ would be of intrin-
sic interest, since it would allow for spin currents to be
generated without dissipation.

In this Letter we show that at sufficiently low energy a
single plane of graphene exhibits a quantum spin Hall
(QSH) effect with an energy gap that is generated by the
SO interaction. Our motivation is twofold. First,
Novoselov et al. [6] have recently reported progress in
the preparation of single layer graphene films. These films
exhibit the expected ambipolar behavior when gated and
have mobilities up to 104cm2=V s. Thus, the detailed ex-
perimental study of graphene now appears feasible. We
believe the QSH effect in graphene is observable below a
low but experimentally accessible temperature. Secondly,
we will show the QSH effect in graphene is different from
the spin Hall effects studied for three-dimensional cubic
systems in Ref. [5] because it leads to a phase which is
topologically distinct from a band insulator. The QSH
effect in graphene resembles the charge quantum Hall
effect, and we will show that spin and charge currents
can be transported in gapless edge states. As a model
system, graphene thus identifies a new class of spin Hall
insulator. It may provide a starting point for the search for
other spin Hall insulators in two-dimensional or in layered
materials with stronger SO interaction.

SO effects in graphite have been known for over 40
years [7], and play a role in the formation of minority
hole pockets in the graphite Fermi surface [8]. However,
these effects have largely been ignored because they are
predicted to be quite small and they are overwhelmed by
the larger effect of coupling between the graphene planes.
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Unlike graphite which has a finite Fermi surface, however,
graphene is in a critical electronic state which can be
strongly affected by small perturbations at low energy.

Graphene consists of a honeycomb lattice of carbon
atoms with two sublattices. The states near the Fermi
energy are � orbitals residing near the K and K0 points at
opposite corners of the hexagonal Brillouin zone. An ef-
fective mass model can be developed [9] by writing the low
energy electronic wavefunctions as

��r� � ��uAK; uBK�; �uAK0 ; uBK0 �� �r� (1)

where u�A;B��K;K0��r� describe basis states at momentum k �
K, K0 centered on atoms of the A, B sublattice.  �r� is a
four component slowly varying envelope function. The
effective mass Hamiltonian then takes the form,

H 0 � �i@vF y��x�z@x � �y@y� : (2)

Here ~� and ~� are Pauli matrices with �z � �1 describing
states on the A�B� sublattice and �z � �1 describing states
at the K�K0� points. This Hamiltonian describes gapless
states with E�q� � �vFjqj. Without spin, the degeneracy
at q � 0 is protected by symmetry. The only possible terms
that could be added to open a gap are proportional to �z or
�z�z. The �z term, which corresponds to a staggered
sublattice potential is odd under parity (which interchanges
the A and B sublattices). The �z�z term is even under
parity, but odd under time reversal (which interchanges K
and K0).

The SO interaction allows for a new term, which will be
the focus of this Letter:

H SO � �so 
y�z�zsz : (3)

Here sz is a Pauli matrix representing the electron’s spin.
This term respects all of the symmetries of graphene, and
will be present. Below we will explicitly construct this
term from the microscopic SO interaction and estimate
its magnitude. If the mirror symmetry about the plane is
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preserved then this is the only allowed spin dependent term
at q � 0. If the mirror symmetry is broken (either by a
perpendicular electric field or by interaction with a sub-
strate) then a Rashba term [10] of the form �s	 p� 
 ẑ is
allowed,

H R � �R 
y��x�zsy � �ysx� : (4)

For �R � 0, �so leads to an energy gap 2�so with E�q� �
�

������������������������������
�@vFq�2 ��2

so

p
. For 0< �R < �so the energy gap

2��so � �R� remains finite. For �R > �so the gap closes,
and the electronic structure is that of a zero gap semicon-
ductor with quadradically dispersing bands. In the follow-
ing we will assume that �R < �so and analyze the
properties of the resulting gapped phase. This assumption
is justified by numerical estimates given at the end of the
Letter.

The gap generated by �z�zsz is different from the gap
that would be generated by the staggered sublattice poten-
tials, �z or �zsz. The ground states in the presence of the
latter terms are adiabatically connected to simple insulat-
ing phases at strong coupling where the two sublattices are
decoupled. In contrast, the gap parameter �z�zsz produces
gaps with opposite signs at theK andK0 points. This has no
simple strong coupling limit. To connect smoothly between
the states generated by �z and �z�zsz one must pass
through a critical point where the gap vanishes, separating
ground states with distinct topological orders.

The interaction (3) is related to a model introduced
by Haldane [11] as a realization of the parity anomaly in
�2� 1�-dimensional relativistic field theory. Taken sepa-
rately, the Hamiltonians for the sz � �1 spins violate time
reversal symmetry and are equivalent to Haldane’s model
for spinless electrons, which could be realized by introduc-
ing a periodic magnetic field with no net flux. As Haldane
showed, this gives rise to a �z�z gap, which has opposite
signs at the K and K0 points. At temperatures well below
the energy gap this leads to a quantized Hall conductance
�xy � �e

2=h. This Hall conductance computed by the
Kubo formula can be interpreted as the topological Chern
number induced by the Berry’s curvature in momentum
space [12,13]. Since the signs of the gaps in (3) are
opposite for opposite spins, an electric field will induce
opposite currents for the opposite spins, leading to a spin
current Js � �@=2e��J" � J#� characterized by a quantized
spin Hall conductivity

�sxy �
e

2�
: (5)

Since spin currents do not couple to experimental probes it
is difficult to directly measure (5). Moreover, the conser-
vation of sz will be violated by the Rashba term (4) as well
as terms which couple the � and � orbitals. Nonetheless,
Murakami et al. [14] have defined a conserved spin sz�c�,
allowing �sxy to be computed via the Kubo formula. We
find that �sxy computed in this way is not quantized when
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�R � 0, though the correction to (5) is small due to car-
bon’s weak SO interaction.

In the quantum Hall effect the bulk topological order
requires the presence of gapless edge states. We now show
that gapless edge states are also present in graphene. We
will begin by establishing the edge states for �R � 0. We
will then argue that the gapless edge states persist even
when �R � 0, and that they are robust against weak
electron-electron interactions and disorder. Thus, in spite
of the violation of (5) the gapless edge states characterize a
state which is distinct from an ordinary insulator. This QSH
state is different from the insulators discussed in Ref. [5],
which do not have edge states. It is also distinct from the
spin Hall effect in doped GaAs, which does not have an
energy gap.

For �R � 0, the Hamiltonian (2) and (3) conserves sz,
and the gapless edge states follow from Laughlin’s argu-
ment [15]. Consider a large cylinder (larger than @vF=�so)
and adiabatically insert a quantum � � h=e of magnetic
flux quantum down the cylinder (slower than �so=@). The
resulting azimuthal Faraday electric field induces a spin
current such that spin @ is transported from one end of the
cylinder to the other. Since an adiabatic change in the
magnetic field cannot excite a particle across the energy
gap �so it follows that there must be gapless states at each
end to accommodate the extra spin.

An explicit description of the edge states requires a
model that gives the energy bands throughout the entire
Brillouin zone. Following Haldane [11], we introduce a
second neighbor tight binding model,

H �
X

hiji�

tcyi�cj� �
X

hhijii��

it2�ijs
z
��c

y
i�cj�: (6)

The first term is the usual nearest neighbor hopping term.
The second term connects second neighbors with a spin
dependent amplitude. �ij � ��ji � �1, depending on the
orientation of the two nearest neighbor bonds d1 and d2 the
electron traverses in going from site j to i. �ij � �1 (� 1)
if the electron makes a left (right) turn to get to the second
bond. The spin dependent term can be written in a coor-
dinate independent representation as i�d1 	 d2� 
 s. At low
energy (6) reduces to (2) and (3) with �so � 3

���
3
p
t2.

The edge states can be seen by solving (7) in a strip
geometry. Figure 1 shows the one-dimensional energy
bands for a strip where the edges are along the zigzag
direction in the graphene plane. The bulk band gaps at
the one-dimensional projections of the K and K0 points are
clearly seen. In addition two bands traverse the gap, con-
necting the K and K0 points. These bands are localized at
the edges of the strip, and each band has degenerate copies
for each edge. The edge states are not chiral since each
edge has states which propagate in both directions.
However, as illustrated in Fig. 2 the edge states are ‘‘spin
filtered’’ in the sense that electrons with opposite spin
propagate in opposite directions. Similar edge states occur
for armchair edges, though in that case the 1D projections
1-2
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FIG. 2. Schematic diagrams showing (a) two terminal and
(b) four terminal measurement geometries. In (a) a charge
current I � �2e2=h� V flows into the right lead. In (b) a spin
current Is � �e=4�� V flows into the right lead. The diagrams to
the right indicate the population of the edge states.
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FIG. 1. (a) One-dimensional energy bands for a strip of gra-
phene (shown in inset) modeled by (7) with t2=t � 0:03. The
bands crossing the gap are spin filtered edge states.
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of K and K0 are both at k � 0. It is interesting to note that
for zigzag edges the edge states persist for �so ! 0, where
they become perfectly flat [16]. This leads to an enhanced
density of states at the Fermi energy associated with zigzag
edges. This has been recently seen in scanning tunneling
spectroscopy of graphite surfaces [17].

We have also considered a nearest neighbor Rashba
term, of the form iẑ 
 �s�� 	 d�cyi�cj�. This violates the
conservation of sz, so that the Laughlin argument no longer
applies. Nonetheless, we find that the gapless edge states
remain, provided �R <�so, so that the bulk band gap
remains intact. The crossing of the edge states at the
Brillouin zone boundary kx � �=a in Fig. 1 (or at k � 0
for the armchair edge) is protected by time reversal sym-
metry. The two states at kx � �=a form a Kramers doublet
whose degeneracy cannot be lifted by any time reversal
symmetric perturbation. Moreover, the degenerate states at
kx � �=a� q are a Kramers doublet. This means that
elastic backscattering from a random potential is forbid-
den. More generally, scattering from a region of disorder
can be characterized by a 2	 2 unitary S matrix which
relates the incoming and outgoing states: �out � S�in,
where � is a two component spinor consisting of the left
and right moving edge states �L",�R#. Under time reversal
�in;out ! sy��out;in. Time reversal symmetry therefore im-
poses the constraint S � syS

Tsy, which rules out any off
diagonal elements.

Electron interactions can lead to backscattering. For
instance, the term u yL"@x 

y
L" R#@x R#, does not violate

time reversal, and will be present in an interacting
Hamiltonian. For weak interactions this term is irrelevant
under the renormalization group, since its scaling dimen-
sion is � � 4. It thus will not lead to an energy gap or to
localization. Nonetheless, it allows inelastic backscatter-
ing. To leading order in u it gives a finite conductivity of
the edge states, which diverges at low temperature as
u�2T3�2� [18]. Since elastic backscattering is prevented
by time reversal there are no relevant backscattering pro-
cesses for weak interactions. This stability against inter-
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actions and disorder distinguishes the spin filtered edge
states from ordinary one-dimensional wires, which are
localized by weak disorder.

A parallel magnetic field Hk breaks time reversal and
leads to an avoided crossing of the edge states. Hk also
reduces the symmetry, allowing terms in the Hamiltonian
which provide a continuously gapped path connecting the
states generated by �z�zsz and �z. Thus in addition to
gapping the edge states Hk eliminates the topological
distinction between the QSH phase and a simple insulator.

The spin filtered edge states have important consequen-
ces for both the transport of charge and spin. In the limit of
low temperature we may ignore the inelastic backscatter-
ing processes, and describe the ballistic transport in the
edge states within a Landauer-Büttiker [19] framework.
For a two terminal geometry [Fig. 2(a)], we predict a
ballistic two terminal charge conductance G � 2e2=h.
For the spin filtered edge states the edge current density
is related to the spin density, since both depend on nR" �
nL#. Thus the charge current is accompanied by spin accu-
mulation at the edges. The interplay between charge and
spin can be probed in a multiterminal device. Define the
multiterminal spin conductance by Isi �

P
jG

s
ijVj. Time

reversal symmetry requires Gs
ji � �G

s
ij, and from

Fig. 2(b) it is clear thatGs
ij � �e=4� for adjacent contacts

i and j. In the four terminal geometry of Fig. 2(b) a spin
current Is � eV=4� flows into the right contact. This
geometry can also be used to measure a spin current. A
spin current incident from the left (injected, for instance,
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FIG. 3. Feynman diagram describing the renormalization of
the SO potential by the Coulomb interaction. The solid line
represents the electron propagator and the wavy line is the
Coulomb interaction.
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with a ferromagnetic contact) will be split, with the up
(down) spins transported to the top (bottom) contacts,
generating a measurable spin Hall voltage.

The magnitude of �so may be estimated by treating the
microsopic SO interaction

VSO �
@

4m2c2 s 
 �rV 	 p� (7)

in first order degenerate perturbation theory. We thus
evaluate the expectation value of (8) in the basis of states
given in (1) treating  �r� as a constant. A full evaluation
depends on the detailed form of the Bloch functions. How-
ever a simple estimate can be made in the ‘‘first star’’
approximation: u�K;K0�;�A;B��r��

P
pexp�iKp 
 �r�d��=

���
3
p

.
Here Kp are the crystal momenta at the three corners of the
Brillouin zone equivalent to K or K0, and d is the a basis
vector from a hexagon center to an A or B sublattice site.
We find that the matrix elements have precisely the struc-
ture (3), and using the Coulomb interaction V�r��e2=rwe
estimate 2�so�4�2e2

@
2=�3m2c2a3��2:4 K. This is a

crude estimate, but it is comparable to the SO splittings
quoted in the graphite literature [8].

The Rashba interaction due to a perpendicular electric
field Ez may be estimated as �R � @vFeEz=�4mc2�. For
Ez � 50 V=300 nm [3] this gives �R � 0:5 mK. This is
smaller than �so because Ez is weaker than the atomic
scale field. The Rashba term due to interaction with a
substrate is more difficult to estimate, though since it is
presumably a weak Van der Waals interaction, this too can
be expected to be smaller than �so.

This estimate of �so ignores the effect of electron-
electron interactions. The long range Coulomb interaction
may substantially increase the energy gap. To leading order
the SO potential is renormalized by the diagram shown in
Fig. 3, which physically represents the interaction of elec-
trons with the exchange potential induced by �so. This is
similar in spirit to the gap renormalizations in 1D Luttinger
liquids and leads to a logarithmically divergent correction
to �so. The divergence is due to the long range 1=r
Coulomb interaction, which persists in graphene even
accounting for screening [20]. The divergent corrections
to �so as well as similar corrections to @vF can be summed
using the renormalization group (RG) [20]. Introducing the
dimensionless Coulomb interaction g � e2=@vF we inte-
grate out the high energy degrees of freedom with energy
between � and �e�‘. To leading order in g the RG flow
equations are

dg=d‘ � �g2=4; d�so=d‘ � g�so=2: (8)

These equations can be integrated, and at energy scale ",
�so�"� � �0

so�1� �g0=4� log��0="��2. Here g0 and �0
so are

the interactions at cutoff scale �0. The renormalized gap is
determined by �R

so � �so��
R
so�. Using an effective interac-

tion g0 � 0:74 [21] and �0 � 2 eV this leads to 2�R
so �

15 K.
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In summary, we have shown that the ground state of a
single plane of graphene exhibits a QSH effect, and has a
nontrivial topological order that is robust against small
perturbations. The QSH phase should be observable by
studying low temperature charge transport and spin injec-
tion in samples of graphene with sufficient size and purity
to allow the bulk energy gap to manifest itself. It would
also be of interest to find other materials with stronger SO
coupling which exhibit this effect, as well as possible
three-dimensional generalizations.
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