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Prewetting Boundary Tensions from Monte Carlo Simulation
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We examine the boundary tension of a model system along the prewetting saturation line. Boundary
tensions are evaluated through a combination of finite-size scaling and grand canonical Monte Carlo
simulation. The model system consists of Lennard-Jones particles interacting with a single structure-
less surface. After scaling our dimensionless results with a characteristic force, we obtain a value of
2� 10�11 N for the boundary tension at the system’s wetting temperature. This estimate is consistent with
theoretical and recent experimental values.
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Prewetting transitions represent one of the many inter-
esting and diverse surface phase transformations observed
when a fluid is in the presence of a substrate. Phase
equilibrium is characterized by coexistence between thin
and thick films absorbed on a substrate. These phase
transitions are often observed with substrates of moderate
strength and occur at a pressure below the bulk saturation
value at a given temperature. Akin to bulk vapor-liquid
saturation lines, prewetting lines terminate at critical end
points. At the low temperature end, prewetting saturation
lines terminate at a wetting temperature, which denotes the
point at which fluid adsorption switches from partial to
complete wetting. The existence of these transitions was
first predicted theoretically by Cahn [1] and Ebner and
Saam [2]. Since their pioneering work, the prewetting
transition has been the subject of numerous theoretical
and computational studies. Experimentally, these transi-
tions have been observed for systems such as 4He on Cs
[3,4] and the mixture water-2, 6-lutidine on silica [5].

Prewetting transitions are inherently two dimensional in
nature. As a result, the boundary between two coexisting
phases is a one-dimensional structure (a line), defined by
the edge-on meeting of a thin and a thick film. Such a
boundary is associated with an inhomogeneity in density,
which gives rise to an excess free energy. The magnitude of
this quantity, per unit length of the interfacial line, defines
the boundary tension. Conceptually, this property is analo-
gous to the surface tension between two bulk phases [6].
Using theoretical arguments, Schick and Taborek have
shown that boundary tension plays an important role in
determining the lifetime of wetting films [7]. Relative to
the determination of prewetting surface phase properties,
this interfacial quantity has proven particularly challenging
to characterize. Although theoretical estimates for the
boundary tension have been obtained, direct experimental
measurement and calculation through molecular simula-
tion have proven difficult.

In this Letter, we use a combination of Monte Carlo
simulation and finite-size scaling techniques to obtain
estimates of the boundary tension for a model system.
05=95(22)=226107(4)$23.00 22610
We utilize a model in which monatomic particles interact
with a single structureless surface. The energy of interac-
tion uff between any two fluid particles separated by a
distance r is given by the truncated Lennard-Jones 12-6
potential,
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where " and � are energy and size parameters, respec-
tively, and the cutoff distance rc has a value of 2:5�. The
energy of interaction usf between the substrate and a fluid
particle separated by a distance z is given by the Lennard-
Jones 9-3 potential,
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with �w�3
w � 0:988, "w=" � 1:2771, and �w=� �

1:0962. From this point forward, all quantities are made
dimensionless using " and � as characteristic energy and
length scales, respectively. The model parameters adopted
in this work were originally introduced by Ebner and Saam
to describe the adsorption of argon on a solid carbon
dioxide surface [2]. Since its introduction, this model has
been used in numerous theoretical [8–11] and simulation
[12–17] studies to investigate prewetting phenomena.
These studies indicate that the model system exhibits
prewetting phase behavior over a relatively broad range
of temperatures, with a wetting temperature of Tw �
0:581 [17,18] and critical prewetting temperature of
Tpwc � 0:92 [14].

The finite-size scaling formalism of Binder [19] is used
to determine boundary tension values. In this approach, a
true boundary tension value �b at a given inverse tempera-
ture � � 1=kT (k is the Boltzmann factor) is related to a
set of apparent system-size-dependent boundary tension
values �b;L, obtained through a series of molecular simu-
lations with varying substrate area A � L2, through the
scaling relationship,
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FIG. 1 (color online). The logarithm of the probability of
observing a system with a given surface density under saturation
conditions at T � 0:75. Curves from top to bottom are for L � 8
through L � 20 in increments of 2.
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1
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lnL
L
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where c1 and c2 are constants. The expression suggests that
the term ��b;L becomes linear in the scaling variable
ln�L�=L as the system size approaches infinity. The formal-
ism enables one to extrapolate the true infinite-system-size
interfacial tension from a series of finite-system-size
calculations.

Apparent system-size-dependent boundary tensions are
directly related to the free energy barrier a system must
traverse when transforming from one surface phase to
another. For a prewetting transition, the relevant macro-
state variable that connects two coexisting phases is the
surface density. It follows that the magnitude of the free
energy barrier FL can be written in terms of the probability
� of finding the system with a surface density correspond-
ing to one of the two saturated phases (�thin and �thick),
relative to the probability of the least likely macrostate
along the path connecting the saturated states (�min),

�FL �
1
2�ln�thin 	 ln�thick� � ln�min: (4)

The system-size-dependent boundary tension is given by
the magnitude of the free energy barrier put unit length of
the interfacial line, �b;L � FL=2L, where the 2 appears in
the denominator due to the presence of two interfaces
within a given simulation cell. Provided an algorithm can
be identified that produces a surface density probability
distribution over a range of states that includes both coex-
isting phases, we now have a means to calculate boundary
tensions.

Surface density probability distributions are obtained
using grand canonical transition-matrix Monte Carlo simu-
lation [20]. Simulations are conducted in a standard grand
canonical ensemble [21] where the volume V � AH,
chemical potential �, and temperature T are held constant
and the particle number N and energy E fluctuate. The
surface density is given by N=A, and is therefore directly
proportional to the particle number. During a simulation,
probabilities of accepting attempted transitions between
states with different values of the particle number are
monitored [22]. At regular intervals throughout a simula-
tion, this information is used to obtain an estimate of the
particle number (surface density) probability distribution
��N�. To ensure that all densities are sampled adequately,
a multicanonical sampling procedure [23] is used to drive
the simulation towards low probability states. Over time,
all densities of interest are sampled with roughly uniform
frequency. The end result is an efficient self-adaptive
method for determining a surface density probability dis-
tribution over a specified range of densities (typically a
range that corresponds to the densities of two potentially
coexisting phases). Once a probability distribution has
been collected at a given value of the chemical potential,
histogram reweighting [24] is used to obtain the probability
distribution at other values of the chemical potential. At
conditions close to coexistence, the two coexisting phases
22610
appear as distinct peaks within the distribution. The satu-
ration point is determined by identifying a chemical po-
tential that produces equal areas under the peaks of the
bimodal distribution. This approach has been used recently
to accurately determine the prewetting phase behavior of
the model studied in this work [17].

The method outlined above is used to calculate the
boundary tension at temperatures spanning from just above
the wetting temperature to the prewetting critical tempera-
ture. Simulations are conducted with a rectangular paral-
lelpiped cell with periodic boundary conditions applied in
the x and y directions. The cell is closed at each end of the z
axis, with an adsorbing wall at one end and a hard wall at
the other. For a given temperature, a series of grand ca-
nonical transition-matrix Monte Carlo simulations are
completed in which the substrate area is varied between
A � 49 �7� 7� and A � 400 �20� 20�. For a given series
of substrate areas, the distance between the adsorbing and
hard walls is kept constant at a value between H � 20 and
H � 40.

Representative surface density probability distributions
for a range of system sizes at T � 0:75 are displayed in
Fig. 1. For relatively small system sizes and high tempera-
tures, the probability varies relatively smoothly with den-
sity. As the system size increases or the temperature is
lowered, distinct regions begin to emerge within the dis-
tribution. Similar to the bulk liquid-vapor case [25], each
of these regions corresponds to a different structural ge-
ometry. For the prewetting system studied here, one may
observe a variety of inhomogeneous two-dimensional
structures, including circular-shaped droplets in an other-
wise homogenous vapor, system-spanning rectangular-
shaped slabs, and circular-shaped voids in an otherwise
homogeneous surface film.
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The system-size dependence of apparent boundary ten-
sion values is shown in Fig. 2. At temperatures sufficiently
below the prewetting critical temperature, these values
monotonically increase with system size. In contrast, for
near-critical conditions, the apparent boundary tensions
decrease with increasing system size. Similar behavior is
observed for the system-size dependence of bulk interfa-
cial tensions [25]. We find that the apparent boundary
tensions vary linearly with the scaling variable ln�L�=L
for systems with surface areas of A � 144 and larger. A
total of five data points are used to extrapolate infinite-
system-size values.

Our estimates of the boundary tension are provided as a
function of temperature in Fig. 3. As pointed out by
Indekeu [26], the prewetting critical temperature is identi-
fied as the first point at which the boundary tension reaches
a value of zero from below. It is at this temperature where
the two coexisting phases become indistinguishable. Our
results indicate that the prewetting critical temperature is
Tpwc � 0:875. This value is approximately 5% lower than
the recent estimate of Shi et al. [16], Tpwc � 0:92, and in
good agreement with the estimate of Bojan et al. [14],
Tpwc � 0:88. Shi et al. located the critical point by exam-
ining finite-system-size density probability distributions,
generated using multiple-histogram reweighting, to iden-
tify the first temperature at which the free energy barrier
between coexisting phases vanishes. Bojan et al. located
the critical point by determining the first temperature at
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FIG. 2 (color online). Apparent system-size-dependent bound-
ary tensions as a function of system size. The plots from top to
bottom are for T � 0:875, T � 0:80, and T � 0:65. Circles
represent simulation data and the dashed lines provide an ex-
trapolation to the true infinite-system-size boundary tension.
Extrapolations are performed using data from systems with 12 

L 
 20.
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which adsorption isotherms, obtained from grand canoni-
cal simulations, cease to display a jump discontinuity. Both
groups indicate the importance of finite-size effects in
locating the critical point and describe their results as
approximate. In this work, we obtain an accurate value
for the prewetting critical temperature by rigorously ac-
counting for the influence of system size.

The wetting temperature represents the second terminal
point on the prewetting line. To approximate the boundary
tension at the wetting temperature �b;w, we fit the data to a
functional form developed by both Indekeu [26] and
Blokhuis [27], �b � �b;w � a�T � Tw�

1=2 	 b�T � Tw�,
where a and b are fitting parameters. This approach leads
to a value of �b;w � 5:1, which is in reasonably good
agreement with theoretical estimates. Using a mean-field
free energy model and a van-der-Waals-based theory,
Perković et al. obtained a limiting reduced boundary ten-
sion of �b;w � 1:57 [28]. Scaling our dimensionless esti-
mate by a characteristic force kT=�, using a temperature of
300 K and length scale of 10 Å [29], gives a value of 2�
10�11 N for the boundary tension at the wetting tempera-
ture. This estimate is roughly an order of magnitude larger
than the value of 4� 10�12 N obtained by Dobbs, who
used a Cahn-type theory to predict the limiting value of the
boundary tension of n-pentane on water [30].

Although direct experimental measurements of the
boundary tension have not been completed, one can obtain
an estimate of �b;w by considering the line tension related
to the three-phase contact line associated with the forma-
tion of liquid droplets on a solid substrate below the wet-
ting temperature. Theoretical arguments, first described by
Widom [31,32] and later supported by mean-field calcu-
lations [28], indicate that the values of the line and bound-
ary tensions are equivalent at the wetting temperature. This
FIG. 3 (color online). Boundary tension as a function of tem-
perature. The hatched region corresponds to states below the
wetting temperature. The dashed line connecting the points
simply serves as a guide to the eye. Complete boundary tension
curves span between the wetting and critical prewetting tem-
peratures.
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finding enables one to estimate the value of �b;w through
measurement and subsequent extrapolation of the line
tension. While a wide range of estimates for �b;w have
been generated using this approach (spanning from 10�12

to 10�5 N), recent measurements with carefully character-
ized surfaces suggest that experimental values for �b;w lie
close to the simulation value obtained in this work. For
example, Wang et al. found a limiting value of 1:2�
10�9 N for the line tension when studying the wetting
behavior of n-octane and 1-octene on a hexadecyltriclor-
osilane coated silicon wafer [33,34]. In another recent
study, focusing on the adsorption of hexaethylene glycol
on a silicon wafer, Pompe obtained a value of 7:8�
10�11 N for �b;w [35].

The results presented here are satisfying in that it ap-
pears that there is reasonable agreement between ex-
perimental, theoretical, and now simulation estimates of
the boundary tension. This study also suggests that mo-
lecular simulation could play an important role in provid-
ing a better understanding of many of the outstanding
issues related to the interfacial properties of surfaces
phases. For example, with an appropriate means to vary
the roughness of a model surface, one could systemati-
cally investigate the influence of surface molecular rough-
ness on line and boundary tensions. It is this factor that is
often cited as the reason for the early experimental line
tension values that are orders of magnitude larger than
theoretical predications. Given that one can precisely spec-
ify the intermolecular forces in a molecular simulation, this
tool could provide insight into how wetting behavior
evolves with the range of intermolecular interactions.
Finally, simulation could help to resolve the relationship
between the line tension and droplet contact angle, an area
where theory and experiment are not in complete agree-
ment [34].

In summary, we have used molecular simulation to
calculate the boundary tension for a model system along
the prewetting saturation line. Finite-size scaling tech-
niques are used to determine true boundary tension values
from system-size-dependent free energy barriers, which
are obtained from grand canonical transition-matrix
Monte Carlo simulations. Our boundary tension values
are within the same order of magnitude as mean-field
theoretical results and are in relatively good agreement
with a number of recent experimental values. Col-
lectively, the results from this and previous studies suggest
that the magnitude of the boundary tension for systems
with short-range interactions is in the vicinity of 10�11 N.
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