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The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on
the shear yield stress �y of simple model glasses are examined using molecular simulations. At long times,
aging leads to a logarithmic increase in density and �y. The yield stress also rises logarithmically with rate
but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple
phenomenological model that includes both intrinsic rate dependence and the change in properties with
the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto
a universal curve.
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The mechanical behavior of amorphous materials such
as polymers [1] and bulk metallic glasses [2] continues to
present great theoretical challenges. While dislocations
have long been recognized as playing a central role in
plasticity of crystalline systems, no counterpart is easily
identifiable in disordered matter. In addition, yield and flow
[3] occur very far from equilibrium, where the state of the
system may have a complex history dependence.

Progress towards understanding yield in glassy systems
is currently being made through a combination of simple
models and particle-based simulations. Falk and Langer’s
rate-equation-based shear transformation zone (STZ) the-
ory [4] was inspired by simulations, and extensions of the
theory [5,6] have been able to reproduce many aspects of
experiments. A valuable alternative approach is based on
the energy landscape picture of glasses, which relates well
to the zero temperature, zero strain rate limit of plasticity
[7,8]. Yet another intriguing approach uses discretizations
of continuum elasticity theory to describe the long-range
interactions of shear yielding regions and resulting local-
ization phenomena (shear bands) [9]. A truly ‘‘ab initio,’’
but very challenging, approach to strained glasses is pres-
ently being pursued by extending the mode-coupling the-
ory of the glass transition to the effects of an external drive
[10–12].

Recent molecular simulations of simple model glasses
have revealed that shear occurs through local deformations
[4] whose quadrupolar strain energy fields are consistent
with STZs [8]. The mean yield stress �y satisfies a gener-
alized von Mises shear yield criterion under general load-
ing conditions as long as failure is homogeneous [13].
However, results for the rate and temperature dependence
of �y [14] are inconsistent with the simple, but widely used,
Eyring model of viscoplasticity. These results and the
statistics of local yield events [8,14] suggest that, in shear-
ing glasses, quantities other than the thermodynamic tem-
perature contribute to the activation of plastic events,
although the precise nature of this ‘‘effective temperature’’
[15] remains uncertain.
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In addition to the above control parameters, experiments
show that the yield stress is sensitive to the age of the glass
[16]. Since glasses are out-of-equilibrium structures, they
exhibit a slow, but never ceasing, intrinsic aging dynamics
[17,18]. In a simple picture, aging can be thought of as
thermally activated hopping in the glassy energy landscape
[17]. With longer aging time, the system is able to pack
more densely and reach deeper and deeper energy minima.
As a result, the stress required to bring the system out of the
local minimum into a flowing configuration increases with
waiting time [19]. This scenario is reflected in the soft
glassy rheology model, which predicts a slow logarithmic
increase of the yield stress with increasing aging time [20].

Our previous studies of shear yielding used a molecular
glass that was prepared through a rapid quench from the
liquid state [14]. The aging or waiting time tw in the glassy
regime before the application of stress was typically
shorter than the time to reach the yield point, a situation
not particularly common in experiments. The computa-
tional effort to reach substantially longer waiting times
used to be prohibitive, but improvements in computing
power are now making it possible to study the relationship
between aging and shear yielding in molecular glasses. A
first study of this kind was presented by Varnik et al. [21],
who showed for one fixed glassy temperature and one fixed
strain rate that the yield stress increases with age. In the
present work, we undertake a more systematic study of
shear yielding in the rate-age-temperature parameter space
and develop a phenomenological model that describes the
complex effects of all these parameters on the shear
strength of the glassy solid.

The methodology in the present work builds on previous
studies [13,14] and uses the 80:20 binary Lennard Jones
(LJ) mixture [22] that has been employed extensively in
molecular dynamics studies of glasses. Our units are the
binding energy u0 and length a of the LJ potential between
majority particles. The characteristic time is tLJ �

�ma2=u0�
1=2, where m is the mass of the particles. When

all interactions are truncated at particle separations greater
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FIG. 1 (color online). Shear yield stress as a function of
waiting time. (a) Four different rates _� � 10�3t�1

LJ (�),
10�4t�1

LJ (�), 10�5t�1
LJ (�), and 10�6t�1

LJ (�) at T � 0:2u0=kB.
The solid line fits to the large tw region have common slope s0,
and successive lines are separated by the vertical shift s1 ln�10�
predicted by Eq. (2). (b) Five different temperatures
T � 0:2u0=kB(�), 0:15u0=kB(�), 0:1u0=kB(�), 0:05u0=kB(�),
and 0:01u0=kB (�) at fixed rate _� � 10�4t�1

LJ . The solid lines are
logarithmic fits to the data at each T, and their slopes s0 are
plotted against T in the inset. The straight line in the inset is a
linear fit through the origin.
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than rc � 1:5a, the model exhibits a glass transition at a
temperature Tg � 0:3u0=kB [14].

We begin by preparing a melt configuration composed of
32 768 particles at T � 1:3u0=kB and then quench rapidly
at constant volume to a glassy temperature T � 0:2u0=kB
over a time of 750tLJ. The initial density is chosen so that
the hydrostatic pressure p is close to zero at this tempera-
ture. We then quench to the desired temperature and wait
a time tw, while maintaining zero pressure. The density
increases with waiting time in a logarithmic fashion, in
agreement with the intuitive idea that aging allows the
material to optimize its local packing [16]. A 0.6% change
is observed from tw � 750 to 750 000tLJ at T � 0:2u0=kB.
As expected for an unstrained system, the rate of relaxation
decreases with decreasing thermodynamic temperature,
becoming too small to detect at T � 0:01u0=kB.

After aging, a volume conserving shear is applied to the
initially cubic simulation cell. The strain along the z di-
rection, �zz, increases at a constant rate _�, and the strains
along the two perpendicular directions are decreased sym-
metrically to maintain fixed volume. As in previous work
[13], we identify the shear yield stress �y with the maxi-
mum of the deviatoric stress � � ���1 � �2�

2 � ��2 �

�3�
2 � ��3 � �1�

2	1=2=3, where the �i are the principal
stresses. The strain at yield, �y, is typically between 5%
and 10% for all cases studied.

Figure 1(a) shows �y as a function of waiting time for
four different strain rates from _� � 10�6 to 10�3t�1

LJ at T �
0:2u0=kB. For all rates, the yield stress increases logarith-
mically at long waiting times, and the slope s0 is indepen-
dent of rate. Note that the changes in �y are too large to be
explained by the increase in density with age discussed
above. Thus, the local internal structure in the glass must
also evolve logarithmically in time. At short times and low
shear rates, our results deviate from the logarithm, becom-
ing nearly independent of tw. This crossover is explained
below [Eq. (2)].

As shown in Fig. 1(b), a logarithmic dependence on
waiting time is also observed at lower temperatures. Data
for a relatively high rate (10�4t�1

LJ ) is shown in order to
avoid the plateau seen at low tw and _� in Fig. 1(a). The
simplest picture of thermal activation in an energy land-
scape would suggest that the slope s0 scales linearly with
temperature. The inset in Fig. 1(b) shows that our data are
generally consistent with s0 / T. The value for T �
0:01u0=kB lies above the linear fit, but the change in �y

is very small at this temperature and the data may be
dominated by an initial transient.

We now turn to the combined effect of strain rate and
aging on the yield stress. Figure 2 examines �y as a
function of strain rate over 3 orders of magnitude in wait-
ing time at T � 0:2u0=kB. The data obtained with the
shortest time, tw � 750tLJ (lowest curve), increase slowly
with rate at low rates and more rapidly at higher rates. This
waiting time corresponds to the one used in our earlier
22550
study of rate dependence [14]. There we showed that the
small rate part of the curve could be fitted to a logarithmic
rate dependence with very little change in the prefactor s0

of the logarithm with T. Here we see that the region of
rapid rate dependence moves to lower rates as tw increases.
For the longest tw, the entire curve can be fit by a loga-
rithmic rate dependence with a higher slope s1 � 0:037.
We will refer to the regimes of low and steep slope as
regimes I and II, respectively. Note that there may also be a
third regime at still higher rates where the strain is faster
than local elastic relaxations of the solid. As discussed in
Ref. [14], this may be reached when _�c=L
 1, where c is
the speed of sound in the glass and L the scale of elastic
heterogeneity. However, this regime is unlikely to be ac-
cessible to experiments.

Varnik et al. also observed a crossover between
regimes I and II that moved to lower rates with increasing
waiting time [21]. They argued that the crossover is asso-
4-2



FIG. 3 (color online). Plot of data for all tw and _� at T �
0:2u0=kB (�), 0:1u0=kB (�), 0:05u0=kB (4), and 0:01u0=kB (�)
and universal curves (solid lines) predicted by Eq. (2).
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FIG. 2 (color online). Shear yield stress as a function of rate
for 4 different waiting times tw � 750tLJ (�), 7500tLJ (�),
75 000tLJ (�), and 750 000tLJ (�) at T � 0:2u0=kB. The solid
lines indicate logarithmic fits with slopes of s1 � 0:037 and s0 �
0:006 for long and short waiting times, respectively. Error bars
are comparable to the symbol size.
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ciated with shearing the system faster than its structural
relaxation time, noting evidence [18] that the time tcage for
atoms to escape from local cages is comparable to tw.
However, a data collapse motivated by this picture did
not describe their data. Moreover, we have evaluated tcage

from diffusion and the decay of the incoherent scattering
function [18] and find tcage increases much more rapidly
than tw, particularly at lower temperatures. As we now
show, a different physical picture based only on the total
effective age of the system can resolve these discrepancies
and explain a wide range of numerical data.

A logarithmic dependence on both waiting time and rate
is commonly observed in friction experiments [23,24]. In
this context, phenomenological ‘‘rate-state’’ models have
captured many experimental results. Such models assume
that the response of the system depends on both the rate of
sliding and on a single ‘‘state variable’’ � that corresponds
to the effective age of the system. Replacing the friction
force and sliding velocity in these models by the yield
stress and strain rate yields

�y � �0 � s0 ln��=tLJ� � s1 ln� _�tLJ�; (1)

where the first logarithm reflects the growth in yield stress
with increasing age that is typical of thermally activated
systems, and the second is the increase in �y with shear rate
for a fixed state of the system. An evolution equation for �
must be specified to complete the model. We write _� �
f��zz; T� to allow for changes in the rate of aging and
rejuvenation during strain. Choosing the normalization
f�0; T� � 1 guarantees that � equals the age tw at the end
of the waiting interval, and integrating to find � at the yield
strain �y gives:

�y � �0 � s0 ln�tw=tLJ � �= _�tLJ� � s1 ln� _�tLJ�; (2)

where � �
R
�y
0 d�zzf��zz; T�. If f is assumed to be inde-

pendent of strain, � � �y, and �= _� just corresponds to the
time ty to strain the system to yield. If rejuvenation begins
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before �y, � will be smaller. Strain may also accelerate
aging [25] by lowering energy barriers, leading to larger
values of �.

Equation (2) captures all of the limiting behavior seen in
our numerical results. For fixed shear rate, only the first
logarithm is relevant. At long waiting times, �y increases as
s0 ln�tw� with a rate independent slope s0 and an offset that
rises as s1 ln� _�tLJ�. This behavior is observed in Fig. 1(a) at
long tw. The saturation of �y at small tw arises because, for
tw < �= _�, the state of the system is dominated by aging
during the straining interval. For fixed waiting time, Eq. (2)
contains the two regimes observed in Fig. 2. When tw is
smaller than �= _� (regime I), tw is irrelevant and the two
logarithms compete. A higher rate increases the intrinsic
strength through the second logarithm in Eq. (2) but allows
less time for aging to increase the yield stress through the
first logarithm. The net result is that �y rises as s0 ln� _��,
where s0 � s1 � s0 is smaller than either s1 or s0. For large
tw (regime II), only the second logarithm in Eq. (2) con-
tributes and �y rises as s1 ln� _��. Here the solid is strained
so rapidly that it does not age significantly before yield
occurs.

Equation (2) also implies that data for all waiting times
and shear rates should collapse onto a universal curve if
�y � s0 ln�tw=t0w� is plotted against _�tw, where t0w is any
reference time. Figure 3 shows the success of this collapse
over the whole temperature range. There are no adjustable
parameters in the collapse, since s0 � s1 � s0 was deter-
mined from separate measurements of s1 and s0 in the
asymptotic regimes of plots like Figs. 1 and 2.

The solid lines in Fig. 3 show the predictions of Eq. (2).
These lines do require fits to �0 and � for each T. The
crossover between regimes I and II occurs when _�tw � �,
and� clearly increases by more than an order of magnitude
with decreasing temperature. For T � 0:2u0=kB, the best
fit gave � � 0:02 with an uncertainty of about a factor of 2
due to the error bars on s0 and s1. Note that this range of �
is comparable to �y, implying that the rate of aging during
strain is comparable to that at zero strain. The increase in �
with decreasing T implies that the aging is accelerated by
strain at low temperatures. Our previous studies of the rate
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of structural rearrangements in strained and unstrained
glasses [14] support these conclusions. The probability
distribution of sudden local stress and strain changes was
monitored as a function of the applied strain at different T.
Very near Tg, the rate and magnitude of local changes is
nearly independent of the applied strain, explaining why
� � �y. At low T, the probability of large events increases
rapidly with strain, becoming comparable to the rate at Tg
near the yield point. In this regime, most of the thermal
activation occurs at strains near the yield point leading to
�� �y.

Equation (2) can also be obtained from a simple modi-
fication of Eyring’s model [26] of stress-assisted thermal
activation over energy barriers of height �E. In this very
simple but commonly used model, the strain rate is asso-
ciated with transition rates over barriers whose height
decreases linearly with applied stress. One obtains �y �
�E=V
 � �kBT=V
� ln� _�=�0	, where V
 is a constant
called the ‘‘activation volume’’ and �0 an attempt fre-
quency. This model provides a basic explanation for loga-
rithmic rate behavior but does not include aging. A
suitable, albeit ad hoc, extension is to include an increase
in �E with the total age of the system, as, for instance,
�E � �E0 � f�T� ln��tw � �= _��=tLJ	. This immediately
yields Eq. (2) with �0 � �E=V
, s0 � f�T�=V
, and s1 �
kBT=V
. However, the observed temperature dependence
of s0 and s1 does not follow simply from these relations.
While s0 is approximately proportional to temperature
[Fig. 1(b) inset], s1 varies slowly at high T and appears
to approach a constant at low T. This would require V
!0
as T ! 0. It seems more likely that s1 is related to intrinsic
rate effects. Several analytic models [5,6,10,11,20] include
such effects, but their consequences have not been worked
out for the entire rate-temperature-age parameter space.

It is interesting to compare the above data for the onset
of yield to previous studies of the flow stress in steady-state
shear [14,21]. Sheared systems cannot reach regime II in
Fig. 3, because they are constantly being ‘‘rejuvenated’’
[3,19]. One expects that the effective waiting time should
scale with the inverse shear rate, leading to logarithmic rate
dependence with slope s1 � s0 characteristic of regime I.
The measured slope is indeed closer to that of regime I and
is also relatively insensitive to temperature [14,21].

In conclusion, we have found a complex interplay of
waiting time, temperature, and rate in determining the
yield stress of glassy solids. In the absence of an imposed
strain, the system evolves only through thermal activation.
Aging leads to a logarithmic increase in density with a
prefactor that decreases rapidly as T decreases. The state of
the system continues to evolve through thermal activation
during shear. The yield stress reflects both this evolution
and intrinsic rate dependence. A unified description
[Eq. (2)] based on rate-state models of friction [23,24] is
able to collapse all data at each temperature onto a univer-
sal curve (Fig. 3). At large values of _�tw (regime II), there
is little evolution of the system as it is strained to yield and
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�y rises rapidly with strain rate. At small values of _�tw
(regime I), the stress rises less rapidly with _� because the
increase in stress with rate is partially offset by a reduction
in the time for aging. The model can be obtained from a
simple modification of the Eyring model, and the results
may help test and motivate future analytic theories of
plasticity in glassy materials. Experimental data [16] are
qualitatively consistent with the model and should follow
the universal collapse predicted by Eq. (2).
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