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Linear Response to Perturbation of Nonexponential Renewal Processes
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We study the linear response of a two-state stochastic process, obeying the renewal condition, by means
of a stochastic rate equation equivalent to a master equation with infinite memory. We show that the
condition of perennial aging makes the response to coherent perturbation vanish in the long-time limit.
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Many complex processes generate erratic jumps back
and forth from a state ‘‘on’’ to a state ‘‘off.’’ We limit
ourselves to quoting ionic channel fluctuations [1–3], cur-
rently triggering the search for a form of stochastic reso-
nance valid also in the nonexponential case [4], and the
intermittency of blinking nanocrystals [5,6]: It has been
assessed that the intermittent fluorescence of these mate-
rials obeys the renewal theory [7]; namely, a jump from
one to the other state has the effect of resetting the system’s
memory to zero. The nonexponential nature of the distri-
bution of sojourn times makes this renewal process non-
ergodic and generates aging effects that are the object of an
increasing theoretical interest [8,9]. Similar properties are
found with surface-enhanced Raman spectra of single
molecules [10].

The authors of [11–13] studied the joint effect of aging
and perturbation on a process of subdiffusion, without
establishing, however, a direct connection with the issue
of non-Poisson stochastic resonance [4]. Here we fill this
gap by means of a stochastic master equation, with no time
convolution. This method might be extended to an arbi-
trarily large number of states and to the case of arbitrarily
intense perturbation.

Let us assume that the distributions of on and off times
are identical. We assign to the survival probability (SP) of
this process, ��t�, the inverse power law form

��t� �
�
T

T � t

�
��1

; (1)

with �> 1. This corresponds to the joint action of the
time-dependent rate [14,15] q�t� � q0=�1� q1t�, with
q0 � ��� 1�=T and q1 � 1=T, and of a resetting pre-
scription. To illustrate this condition, let us imagine the
random drawing of a number from the interval I � �0; 1� at
discrete times i � 1; 2; . . . . The interval I is divided into
two parts, I1 and I2, with I1 ranging from 0 to pi, and I2

ranging from pi to 1. Note that pi � 1� qi < 1 and qi �
1, and, as a consequence, the number of times we keep
drawing numbers from I1, without moving to I2, is very
large.
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Let us evaluate the distribution of these persistence
times, and let us discuss under which conditions we get
the SP of Eq. (1). The SP function is the probability of
remaining in I1 after n drawings and is consequently given
by

��n� �
Yn
i�1

pi: (2)

Using the condition qi � 1, and evaluating the logarithm
of both terms of Eq. (2), we obtain

log���n�� � �
Xn
i�1

qi: (3)

The condition qi � 1 implies that i and n of Eq. (3) are so
large as to make qi virtually identical to a function of the
continuous time t, qi � q�t� � q0=r�1� q1���t��, with
���t� � t. Thus, Eq. (3) yields the SP of Eq. (1), and the
corresponding waiting time distribution density,  ���,
reads

 ��� � ��� 1�
T��1

��� T��
: (4)

We denote as collisions the rare drawings of a number
from I2, followed by resetting. Thus the collisions occur-
ring at times �1, �1 � �2; . . . , yield ���t� � t, 0< t < �1,
���t� � �t� �1�, �1 < t < �1 � �2, and so on. Note that
���0� � 0 means that we prepare the system at time t � 0.
We adopt a coin tossing prescription to decide whether to
keep or to change sign, after any collision.

The state of the system after the nth collision is de-
scribed by the two-dimensional vector P�n�, whose com-
ponents, P1 and P2, are the probabilities of finding the
system in the corresponding states. The nth collision pro-
duces the change

P �n� �MP�n� 1�; (5)

where
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M �
1=2 1=2
1=2 1=2

� �
: (6)

Equation (5) refers to an integer-time representation. We
convert this collisional process into a virtually continuous-
time representation by relating the collisions to the abso-
lute time at which they occur, as done in [16]. We obtain

d
dt

P�t� � �
Z t

0
d���t� ��KP���: (7)

The matrix K is defined by

K 	
1

2
1 �1
�1 1

� �
; (8)

and the memory kernel ��t� is related to  �t� in the
Laplace domain through

�̂�u� �
u ̂�u�

1�  ̂�u�
; (9)

where �̂�u� and  ̂�u� denote the Laplace transforms of
��t� and  �t�, respectively.

Now, let us define the quantity

��t� � P1�t� � P2�t� � 2P1�t� � 1: (10)

Using Eq. (7), we get for the Laplace transform of ��t�,
�̂�u�, the following expression:

�̂�u� �
1

u� �̂�u�
; (11)

which, in turn, using Eq. (9), gives �̂�u� � �̂�u�, namely,
the key property

��t� � ��t�: (12)

There exists another way to move from the discrete time
n to time t. This is through the following Markov but
stochastic master equation:

�1�t� 1� � �1�t� � �
r��t�

2
�1�t� �

r��t�
2

�2�t�;

�2�t� 1� � �2�t� � �
r��t�

2
�2�t� �

r��t�
2

�1�t�:

(13)

Let us study first this equation when no perturbation oc-
curs. In this case, we set r��t� � r��t� � r�t�, with r�t�
being a function of time always vanishing except when a
collision occurs, where it then gets the value of 1. We adopt
the notation

exp
�
�
Z t

t0
dt00r�t00�

�
	 exp�t; t0� 	

Yt�t0
i�0

�1� r�t� i��:

(14)

Note that with these definitions we obtain
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d
dt0

exp�t; t0� � exp�t; t0 � 1� � exp�t; t0�

� �r�t0 � 1� exp�t; t0�; (15)

which for very large values of t0 is equivalent to

d
dt0

exp
�
�
Z t

t0
r�t00�dt00

�
� � exp

�
�
Z t

t0
r�t00�dt00

�
r�t0�;

(16)

namely, the ordinary continuous-time prescription.
To confirm the equivalence of Eq. (13) with Eq. (7) let us

prove that the statistical average of ��t� 	 �1�t� �
�2�t� � 2�1�t� � 1 yields ��t� of Eq. (10). Let us assume
that all the systems are located at the beginning of their
sojourn in either the state on or the state off, so as to fit the
prescription of preparing the system at t � 0. Thanks to
Eq. (13), we obtain

��t� � exp
�
�
Z t

0
r�t0�dt0

�
; (17)

which yields

h��t�i � ��t�: (18)

In fact, ��t�, due to Eq. (14), drops abruptly from 1 to 0
when a collision occurs. Thus, its mean value becomes
identical to the survival probability ��t�. Using Eq. (12),
we conclude that h��t�i � ��t�.

Although the approach of this Letter is not confined to
the linear response, let us study the effect of a weak
perturbation on T, by making both q0 and q1 depend on
time so as to keep � fixed. As in Ref. [11], we set a bias at
the moment of a collision, without perturbing the temporal
sequence �1; �2; . . . . This linear response assumption is
realized by expressing Eq. (13) in terms of r
�t� � r�t��
�1� �F
�t��, where � is the perturbation strength and the
functions F
�t� describe the perturbation action on the
corresponding states. Using Eq. (13) we obtain

d
dt

��t� � �r�t��1� �S�t����t� � r�t��f�t�; (19)

where S�t� 	 �F��t� � F��t��=2 and f�t� 	 �F��t� �
F��t��=2. We assume that the perturbation strength � is
so small as to replace 1� �S�t� with 1. Solving the result-
ing approximated form of Eq. (19), we arrive at

��t� � ��
Z t

0
dt0 exp

�
�
Z t

t0
r�t00�dt00

�
r�t0�f�t0�

���0� exp
�
�
Z t

0
r�t0�dt0�

�
; (20)

with the fluctuation of r�t� being the same as in the absence
of perturbation.

We are interested in the mean value of ��t�, namely,
��t�. This leads us to write
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��t� � ��
Z t

0
��t; t0�f�t0�dt0 ���0���t�; (21)

where

��t; t0� �
d
dt0

��t; t0�; (22)

with ��t; t0� being the characteristic function

��t; t0� 	
�

exp
�
�
Z t

t0
dt00r�t00�

��
: (23)

With ��0� � 0, Eq. (21) becomes formally identical to
the common linear response prescription [17], with, how-
ever, aging violating the stationary condition ��t; t0� �
��t� t0�.

Using the same arguments as those earlier adopted to
prove Eq. (18), we show that ��t; t0� coincides with the
survival probability of age t0 of Ref. [18]. According to
[18], the function ��t; t0� coincides with the aging corre-
lation function of the dichotomous signal under study,
C�t; t0�. By means of the stationary assumption, we recover
the results of Refs. [4,19,20] and we realize why these
earlier results go beyond the Green-Kubo prediction
[21,22].

In the case �< 2, the stationary condition cannot be
realized, not even in principle, while in the case�> 2, it is
possible, even if�< 3 makes the relaxation to equilibrium
very slow [23]. Let us study first the more traditional
condition �> 2, and let us switch perturbation on after
the transient process necessary to reach equilibrium. We
have [24]

��t; t0� � � 1�t� t0� � ���� 2�
T��2

�t� t0 � T���1 :

(24)

In this case, the stationary correlation function of the on
and off fluctuation, C�t� t0�, exists and has the analytical
form �T=�t� T����2, thereby yielding

 1�t� t0� � �
d
dt
C�t� t0�: (25)

Note that the linear response of Eq. (21), with ���t; t0�
replaced by  1�t� t0� of Eq. (25), coincides with the
prescription of the phenomenological approach of
Ref. [4]. In the case where f�t� � ��t�, with ��t� denoting
the unit step function, by plugging Eq. (25) into Eq. (21),
we obtain

��1� � �; (26)

and consequently the constant drift of Ref. [19] (the sub-
diffusional map of Ref. [20], in this case, yields the same
result).

In the case where f�t� � ��t� cos�!t�, namely, the case
of stochastic resonance discussed by the authors of
Ref. [4], by using the expression for the Laplace transform
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of  1�t� and the convolution theorem, we obtain for the
Laplace transform of ��t� the following result:

�̂�u� � ��1� cT��2u��2�
u

�u2 �!2�
; (27)

where c 	 ���3���. Using the fractional derivative
method of Ref. [25], we evaluate the anti-Laplace trans-
form of �̂�u� of Eq. (27). In the case !T � 1, we obtain
[26,27]

��t� � �
�

1� �!T���2��3��� cos
�
2
�
�

cos!t

� ��!T���2��3��� sin
�
2
� sin!t: (28)

As pointed out earlier, the theory of this Letter also
applies to the aging case and to the condition�< 2, which
makes aging a perennial condition of renewal systems. In
this case, using dynamical arguments [26] we identify the
susceptibility of Eq. (21) with the aged  �t; t0�. It is known
[18,28] that the exact expression for  �t; t0� is

 �t; t0� �  �t� �
X1
n�1

Z t0

0
 n��� �t� ��d�; (29)

where  n�t� denotes the probability density of occurrence,
at time t, of the last of a sequence of n collisions. Let us go
back to Eq. (21) and let us set ��0� � 0. This has the effect
of producing a condition where a nonvanishing ��t� ap-
pears only as a perturbation effect. For the Laplace trans-
form of ��t�, we obtain the following expression:

�̂�u� � ��Re�Ê�u��; (30)

where Ê�u� is the Laplace transform of

E�t� 	
Z t

0
dt0 �t; t0� exp��i!t0�: (31)

After some algebra, we find

Ê�u� �
i
!
� ̂�u� i!� �  ̂�u��

�1�  ̂�u� i!��
: (32)

It is of some interest to study Eq. (32), with �> 2 and
!T � 1. Using the imaginary Laplace transforms of  �t�
[29], for u! 0 we get an analytical form for Ê�u�; with
this analytical form plugged into Eq. (30), we recover
Eq. (28) in the same limiting condition, namely, the
Laplace transform of � cos�!t�. This means that perturbing
the system in the infinitely aged condition, or keeping it
under the perturbation influence, from the preparation to
the infinitely aged condition, yields the same result.

It is interesting to remark that Eq. (32) establishes the
effect of the step function perturbation in the case �< 2.
As a first step, we write Eq. (32) in the limiting condi-
tion !! 0. This first step yields Ê�u� � ��d ̂�u�=du�=
�1�  ̂�u��. As a second step, we set u! 0. By using the
expression of  ̂�u�, in this limiting condition, with �< 2,
1-3



PRL 95, 220601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
and by means of Eq. (30), we obtain the final result �̂�u� �
������ 1�=u� c=u��1�, in the Laplace domain, and
��t� � ������ 1� � k=t2���, in time domain (the sym-
bols c and k denote constants).

To study the effect of f�t� � ��t� cos�!t�, let us make
the assumption!T � 1, which, in the case of�> 2, turns
�̂�u� into the Laplace transform of � cos�!t�, as shown
by Eq. (28). In the case �< 2, the assumption !T � 1
allows us to obtain

�̂�u� � �Re
�
i
!

�
1�

�
u

u� i!

�
��1

��
: (33)

Using the fractional derivative method of Ref. [25], we find
[26]

��t� � ��Re
�X1
n�1

�� 1
n

� �
��i!t�n�1

�n� 1�!
e�i!t

�

� ��Re���� 1�F�2��; 2; i!t�e�i!t�; (34)

where F��;�; z� is the confluent hypergeometric function
[30]. In the special case � � 3=2, of interest for the
physics of blinking quantum dots [5,6], the method of
Ref. [25] yields [26]

��t� � �
�
2

�
J0

�
!t
2

�
cos

�
!t
2

�
� J1

�
!t
2

�
sin
�
!t
2

��
; (35)

with Jn�  � denoting the Bessel function, and, in general,

��t� � �
cos��2 ��!t�

���� 1��!t�2��
; (36)

which means that the condition �< 2 annihilates the
response coherence in the long-time limit.

In conclusion, the approach to the response of nonexpo-
nential renewal processes to external perturbation illus-
trated in this Letter meets the request for extending the
theory of stochastic resonance to the non-Poisson case,
with no stationary constraint [4]. This approach shows
that the stochastic resonance dies out, if the perennial aging
condition applies. We afford also the attractive possibility
of moving beyond the linear response.
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