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Continuous Quantum Measurement with Independent Detector Cross Correlations
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(Received 2 May 2005; published 21 November 2005)
0031-9007=
We investigate the advantages of using two independent, linear detectors for continuous quantum
measurement. For single-shot measurement, the detection process may be quantum limited if the detectors
are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin
bound for the detector’s signal-to-noise ratio. The joint weak measurement of noncommuting observables
is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a
crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a
double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.
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FIG. 1. Cross-correlated quantum measurement setup: Two
quantum point contacts are measuring the same double
quantum-dot qubit. As the quantum measurement is taking
place, the current outputs of both detectors can be averaged or
cross correlated with each other.
There has recently been intensive research, both experi-
mental and theoretical, into the development of quantum
detectors in the solid state. Mesoscopic structures, such as
the quantum point contact, single electron transistor, and
SQUID have been used for fast qubit readout. Contrary to
the historical assumption that the quantum measurement
occurs instantaneously, in the modern theory of quantum
detectors the continuous nature of the measurement pro-
cess is essential to the understanding and optimization of
how quantum information is collected. The ultimate goal
for quantum computation is the development of ‘‘single-
shot’’ detectors, where in one run the qubit’s state is
unambiguously determined. An important figure of merit
is the detector’s efficiency, defined as the product of the
typical time taken to measure the state of the qubit, with the
measurement-induced dephasing rate. In a quantum lim-
ited detector the efficiency is minimized, and physically
corresponds to the situation when all information about the
qubit state encoded in the detector degrees of freedom may
be deduced from the measured output.

Single-shot detectors are difficult to realize because of
the fast time resolution required. Another approach is that
of weak measurement, where the detector is continuously
measuring the state as the qubit undergoes Hamiltonian
evolution. Detector backaction renders the state of the
qubit invisible in the average output of the detector, but a
signature of quantum coherent oscillations is uncovered in
the spectral density of the detector. These measurements
are easier to preform because both detector and qubit
averaging are permitted, and the experiments only require
a bandwidth resolution of the qubit energy splitting. One
important result in weak measurement theory is the
Korotkov-Averin bound. It states that as the weak mea-
surement is taking place, the detector backaction quickly
destroys the quantum oscillations, so the maximum detec-
tor signal-to-noise ratio is fundamentally limited at 4. This
result was derived in Ref. [1], confirmed in Ref. [2], gen-
eralized in Ref. [3], and measured in Ref. [4].

In this Letter, the theoretical advantages of considering
the cross-correlated output of independent quantum detec-
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tors are investigated. It is clear that cross correlations
bestow an experimental advantage [5] in quantum mea-
surement, because the procedure filters out any noise not
shared by the two detectors. Thus, extraneous noise pro-
duced by sources such as charge traps in one detector will
be removed. This technique is also used in quantum noise
measurements for this same advantage [6]. We demon-
strate that although the two detectors cannot improve the
efficiency of the detection process, the cross-correlated
output can violate the Korotkov-Averin bound: The back-
ground detector noise may be eliminated completely, so the
signal-to-noise ratio is divergent. An important application
of cross-correlated detectors is the simultaneous weak
measurement of noncommuting observables. The fact
that this question is ill-defined in the theory of projective
measurements gives additional impetus to investigate this
fundamental issue. We find that the cross correlator
changes sign as a function of frequency, reflecting a cross-
over from incoherent relaxation at low frequency, to out of
phase, coherent oscillations at high frequency. As a solid-
state implementation of our results, Fig. 1 depicts two
quantum point contacts capacitively coupled to the same
double quantum dot representing a charge qubit. It should
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be stressed that such two-detector structures have already
been fabricated [7].

Detector assumptions and linear response.—We employ
the linear response approach to quantum measurement
because of its elegant simplicity and general applicability
to a wide range of detectors [1,8,9]. The quantum operator
to be measured is �z. The Hamiltonian is

H�����z���x�=2�H1�H2�Q1�z=2�Q2�z=2;

(1)

where Q1;2 are the bare input variables of detector 1 and 2,
H1;2 are their Hamiltonians, and � and � are, respectively,
the energy asymmetry and tunnel-coupling of the qubit.
The small coupling constants between qubit and detectors
are incorporated into the definition ofQ1;2. We assume that
the detector is much faster than all qubit time scales, so the
relevant detector correlation functions are the stationary
zero frequency correlators:

hIi�t� ��Ij�t�i � S�i�I �ij����; (2a)

hQi�t� ��Qj�t�i � S�i�Q �ij����; (2b)

hQi�t� ��Ij�t�i � �ReS�i�QI � i ImS�i�QI��ij����; (2c)

hIi�t� ��Qj�t�i � �ReS�i�QI � i ImS�i�QI��ij����; (2d)

where I1;2 are the bare output variables of the detectors.
The time � functions have a small shift ���� 0� to resolve
the ambiguity in the correlators (2c) and (2d). Physically,
this shift reflects the finite response time of the detector.
Linear response theory tells us that the response coeffi-
cients �1;2 are given by �i � �2 ImS�i�QI=@, so the output of
the detectors (with the background average subtracted) is
Oi � Ii � �i�z=2. As the detector is turned on, it gradu-
ally collects information about the operator�z. The state of
the qubit may be determined after the integrated difference
in qubit signal exceeds the detector noise. In the simplest
case of � � 0, the standard expressions for the dephasing
rate � and measurement time TM are [10]

� � SQ=�2@2�; TM � 4SI=�2: (3)

Let us next observe

@
2�2 � 4�ImSQI�2 � 4jSQIj2 � 4SQSI; (4)

where we have used the Cauchy-Schwartz inequality. For a
lone detector the above relations imply �TM � 1=2, where
equality is reached for quantum limited detectors. The two
conditions needed to reach this limit are

ReSQI � 0; (5a)

jSQIj
2 � SQSI: (5b)

In the context of mesoscopic scattering detectors, con-
dition (b) is related to the energy dependence of the trans-
mission of the scatterer, while condition (a) is related to
the symmetry of the scatterer [1]. Pilgram and one of the
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authors derived Eq. (5) for arbitrary detectors described by
scattering matrices [8]. Clerk, Girvin, and Stone inter-
preted these conditions as ‘‘no lost information’’ about
the qubit state, either through (a) phase or (b) energy
averaging of the detector degrees of freedom [9].

Can we do better with two detectors?—By adding an
additional detector to the qubit, the measurement time may
be reduced because the signals may be averaged, O �
�O1 �O2�=2. On the other hand, the new detector de-
phases the qubit more quickly. For statistically independent
detectors, the measurement-induced dephasing rate is sim-
ply the sum of the individual dephasing rates, so the two-
detector efficiency is

�TM � 2�S�1�I � S
�2�
I ��S

�1�
Q � S

�2�
Q �=@

2��1 � �2�
2 � 1=2;

(6)

where equality is reached for twin detectors that are them-
selves quantum limited. This condition may also be inter-
preted as no lost information about the state between the
two detectors. Rather than averaging the signals, we could
instead cross correlate them. However, this also brings no
advantage because the new signal obtained by multiplying
the output from the two detectors, O1�t1�O2�t2�, has its
own noise. If we could average over many trials the noise
could be eliminated, but for single-shot measurement the
efficiency is still intrinsically limited.

Violation of the Korotkov-Averin bound.—Consider next
Korotkov and Averin’s bound on the signal-to-noise ratio
for a weakly measured qubit [1]. It states that the ratio of
the measured qubit signal to detector noise, R, is funda-
mentally limited by 4. This bound can be overcome with
quantum nondemolition measurements by increasing the
signal [11]. In this Letter, we are concerned with reducing
the noise. To see how this bound emerges, we briefly derive
this inequality for one detector. The Hamiltonian is given
by Eq. (1) with Q2 � 0. The time averaged output of the
detector (with background average subtracted) is hOi �
��=2��1=T�

R
T
0 dth�z�t�i. For a weakly measured qubit, the

statistical average over �z is taken with respect to the
stationary, mixed, density matrix of the qubit that is pro-
portional to the identity matrix, � � �1=2�1. The qubit
therefore makes no contribution to the average output
current. The detector’s spectral density is S�!� �
SI � ��

2=4�Szz�!�, where

Sij�!� � 2
Z 1

0
dt cos�!t�h�i�0��j�t�i: (7)

The qubit dynamics may be found by expanding the evo-
lution operator to second order in the coupling constant,
and averaging over the �-correlated Q fluctuations to
obtain equations of motion, with dephasing rate �. In the
special case of � � 0, the noise spectrum in the vicinity of
! � �=@ � � is [1]
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S�!� � SI �
�2�

2

�2

�!2 ��2�2 �!2�2 : (8)

At the qubit frequency, ! � �, the noise spectrum has
a maximum ‘‘signal’’ of Smax � �2=�2�� � @

2�2=SQ.
Again, we use the linear response relation (4) to bound
the signal-to-noise ratio of the detector as

R � Smax=SI � 4: (9)

This is the Korotkov-Averin bound.
Consider now the cross correlation of the outputs from

two independent detectors, both measuring the same qubit
operator �z. The qubit dynamics is the same, except that
� � �1 � �2. The spectral density of the cross correlation
S1;2�!� contains four terms,

S1;2�!� �
Z 1

0
dt cos�!t�	2hI1�0�I2�t�i � �1h�z�0�I2�t�i

� �2hI1�0��z�t�i � ��1�2=2�h�z�0��z�t�i
:

(10)

According to Eq. (2a) the bare detector noise of the two
detectors are uncorrelated, the averaged qubit dynamics is
uncorrelated with the bare detector noise, so only the qubit
signal (7) contributes to the correlation function (10). The
remaining question is the detector configuration that max-
imizes the signal at ! � �. The signal is given by Smax �
�1�2=	2��1 � �2�
, and we may use the relations (4) to
bound the cross-correlated signal in relation to the noise
power of the individual detectors as

Smax � 2
���������������
S�1�I S

�2�
I

q
; (11)

where equality is reached for S�1�Q � S�2�Q . For twin detec-
tors, (11) is half of the single detector signal because of the
doubled dephasing rate [12].

We have successfully removed the background noise,
and can now see the naked destruction of the qubit [13].
The signal-to-noise ratio R is divergent, violating the
Korotkov-Averin bound. Why did cross correlations help
here, but not in the efficiency? The reason is that the
efficiency is a measure of the information acquired on
one observable versus detector influence on the comple-
mentary observables, and is thus protected by the uncer-
tainty principle. In contrast, while the signal-to-noise ratio
R is a useful detector diagnostic, there is no fundamental
limitation on its measurement.

Weak measurement of noncommuting observables.—
Once we have two detectors involved, there is no reason
why they both have to measure the same observable (or one
that commutes with it). We now consider an experiment
where one detector weakly measures �z, the other weakly
measures �x, and the outputs are cross correlated. The
measured correlator is S1;2�!� � ��1�2=4�Szx�!�. This
experiment could be implemented with a split Cooper-
pair box [14], where a SQUID is weakly measuring the
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persistent current, and a quantum point contact is weakly
measuring the electrical charge. In standard projective
measurement theory, the question of a simultaneous mea-
surement of noncommuting observables cannot even be
posed.

The coupling part of the Hamiltonian is altered to be
Hc � �1=2�Q1�z � �1=2�Q2�x. We parameterize any
traceless qubit operator as ��t� �

P
ixi�t��xi and the den-

sity matrix � � 	1� ��t�
=2. Variables �x; y; z� also rep-
resent coordinates on the Bloch sphere. After averaging
over the white noise ofQ1 and Q2, the equations of motion
for xi are

_x
_y
_z

0
@

1
A �

��z ��=@ 0
�=@ ��x � �z ��=@

0 �=@ ��x

0
@

1
A x

y
z

0
@

1
A; (12)

where �z � S�2�Q =�2@
2� and �x � S�1�Q =�2@

2�. Diagonaliza-
tion of the transition matrix in the case �x � 0 gives the
usual expressions for the dephasing and relaxation rates.
This setup is far away from an efficient measurement
because one detector is destroying the signal the other is
trying to measure. However, in the case of weak measure-
ment, this situation displays interesting behavior. The cross
correlation S1;2��� attains its maximum signal at the sym-
metric point � � �, �x � �z � �, so the qubit frequency
is � �

���
2
p

�=@. The master equation may be solved in the
weak dephasing limit (�� �), giving the correlation (for
positive frequencies)

Sxz�!� � Szx�!� �
�

�2 �!2 �
3�

9�2 � 4�!���2
: (13)

The first term has a peak at zero frequency, while the
second term has a dip at ! � �, with width 3�=2, and
signal�1=3�. Bounding this signal in relation to the noise
in the individual twin detectors gives jS1;2���j � �2=3�SI.
The interesting feature of this correlator is that it changes
sign as a function of frequency. The low frequency part
describes the incoherent relaxation to the stationary state,
while the high frequency part describes the out of phase,
coherent oscillations of the z and x degrees of freedom. The
measured correlator Szx, as well as Sxx, Szz are plotted as a
function of frequency in Figs. 2(b)–2(d) for different
values of �. These correlators all describe different aspects
of the time domain destruction of the quantum state by the
weak measurement, visualized in Fig. 2(a). We note that
the cross correlator changes sign for � � ��.

Implementation.—We now consider two quantum point
contacts (QPCs), measuring a double quantum-dot qubit.
The QPC obeys conditions (5) perfectly. Under the addi-
tional condition that the applied bias is larger than the
temperature and � (so thermal equilibrium effects can be
neglected), the QPC is an ideal detector [1,8,9]. The
bare input detector variable Q is identified with the elec-
trical charge in the point contact, while the bare output
variable I is identified with the noisy current (shot noise).
1-3
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FIG. 2 (color online). (a) Time domain destruction of the
quantum state by the weak measurement process for � � �.
The elapsed time is parameterized by color, and �x; y; z� denote
coordinates on the Bloch sphere. (b) The measured cross corre-
lator Szx�!� changes sign from positive at low frequency (de-
scribing incoherent relaxation) to negative at the qubit oscilla-
tion frequency (describing out of phase, coherent oscillations).
(c),(d) The correlators Sxx, Szz have both a peak at zero fre-
quency and at qubit oscillation frequency. We take � � �x �
�z � 0:07�=@. Sij are plotted in units of ��1.
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The conductance of the QPC is sensitive to the electron’s
position on the double dot. A measurement of the quantum
state occurs when the integrated current difference exceeds
the shot noise power. In the geometry shown in Fig. 1, one
detector measures �z, while the other detector measures
��z, so the qubit signal will be anticorrelated. The charges
on the two detectors are not independent, but rather must
be the opposite of each other to have charge neutrality in
the system. This electrical screening generates correlations
between the potentials of the two QPCs, so the detectors
will in general be statistically dependent on each other.
This situation is in marked contrast with the single detector
case [8], where screening simply renormalized the cou-
pling constant. However, in realistic detectors there will
always be other gates to control the quantum double dot,
creating a larger capacitance matrix than the minimal one
shown in Fig. 1. In this extended geometry, a charge
fluctuation in one detector will be screened by the sur-
rounding metallic gates (not by the other detector), justify-
ing the independent detector model [13]. We mention that
in the experiment already done by Buehler et al. [5], the
detectors seem to be completely independent.

Conclusions.—We considered the advantages that two
independent quantum detectors measuring the same qubit
can bring to the quantum measurement problem. The
quantum limit on the efficiency could be reached with
twin detectors. For weak continuous measurement, the
cross-correlated signal removes the noise background,
22040
and allows a violation of the Korotkov-Averin bound on
the signal-to-noise ratio. The simultaneous weak measure-
ment of noncommuting operators was investigated, and
revealed a crossover from positive to negative correlation
as a function of frequency. Although we have focused on
mesoscopic qubits, our results easily extend to other sys-
tems where similar bounds have been derived, such as
single spins and nanomechanical oscillators [15].
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