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Model for the Distribution of Aftershock Interoccurrence Times
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In this work the distribution of interoccurrence times between earthquakes in aftershock sequences is
analyzed and a model based on a nonhomogeneous Poisson (NHP) process is proposed to quantify the
observed scaling. In this model the generalized Omori’s law for the decay of aftershocks is used as a time-
dependent rate in the NHP process. The analytically derived distribution of interoccurrence times is
applied to several major aftershock sequences in California to confirm the validity of the proposed
hypothesis.
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The occurrence of earthquakes is an outcome of com-
plex nonlinear threshold dynamics in the brittle part of
Earth’s crust. This dynamics is a combined effect of differ-
ent temporal and spatial processes taking place in a highly
heterogeneous media over a wide range of temporal and
spatial scales [1]. Despite this complexity, one can consider
earthquakes as a point process in space and time, by
neglecting the spatial scale of earthquake rupture zones
and the temporal scale of the duration of each earthquake
[2–4]. Then one can study the statistical properties of this
process and test models that may explain the observed
seismic activity.

In this Letter, we analyze one of the important aspects of
the seismic activity, i.e., the statistics of interoccurrence
times of successive earthquakes in an aftershock sequence.
To summarize our results, we have found that these statis-
tics are consistent, to a good approximation, with a non-
homogeneous Poisson (NHP) process driven by a power-
law decay rate by mapping the occurrence of aftershocks in
a multidimensional space into a marked point process on
the one-dimensional timeline. The nature of this distribu-
tion is closely related to the temporal correlations between
earthquakes and can be used in hazard assessments of the
occurrence of aftershocks. We have also derived an exact
formula describing the distribution of times between events
in a NHP process over a finite time period T and confirmed
it by numerical simulations.

Earthquakes form a hierarchical structure in space and
time and can also be thought of as a branching process
where each event can trigger a sequence of secondary
events and so forth. According to this structure, in some
cases it is possible to discriminate between foreshocks,
main shocks, and aftershocks, although this classification
is not well defined and can be ambiguous. However, it is
observed that moderate and strong earthquakes initiate
sequences of secondary events which decay in time.
These sequences are called aftershocks, and their spatial
and temporal distributions provide valuable information
about the earthquake generating process [5].

Earthquakes follow several empirical scaling laws. Most
prominent of them is the Gutenberg-Richter relation [6],
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which states that the cumulative number of events greater
than magnitude m, N�� m�, follows an exponential distri-
bution N�� m� / 10�bm, where b is a universal exponent
near unity. This distribution becomes a power law when the
magnitude is replaced with the seismic moment, as the
magnitude scales as a logarithm of the seismic moment.
Another empirical power-law scaling relation describes the
temporal decay of aftershock sequences in terms of the
frequency of occurrence of events per unit time; this is
called the modified Omori’s law [7]. The spatial distribu-
tion of faults on which earthquakes occur also satisfies
(multi)fractal statistics [8,9]. These laws are manifesta-
tions of the self-similar nature of earthquake processes.

Based on studies of properties of California seismicity,
an attempt to introduce a unified scaling law for the tem-
poral distribution of earthquakes was proposed [10]. The
distribution of interoccurrence times between successive
earthquakes was obtained by using as scaling parameters
both a grid size over which the region was subdivided and a
lower magnitude cutoff. Two distinct scaling regimes were
found. For short times, aftershocks dominate the scaling
properties of the distribution, decaying according to the
modified Omori’s law. For long times, an exponential
scaling regime was found that can be associated with the
occurrence of main shocks. To take into account the spatial
heterogeneity of seismic activity, it has been argued that
the second regime is not an exponential but another power
law [11]. An analysis of the change in behavior between
these two regimes based on a nonstationary Poisson se-
quence of events was carried out in [12]. The further
analysis of aftershock sequences in California and
Iceland revealed the existence of another scaling regime
for small values of interoccurrence times [9].

An alternative approach to describe a unified scaling of
earthquake recurrence times was suggested in [13–15],
where the distributions computed for different spatial areas
and magnitude ranges were rescaled with the rate of seis-
mic activity for each area considered. It was argued that the
seismic rate fully controls the observed scaling and that the
shape of the distribution can be approximated by the
generalized gamma function, indicating the existence of
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FIG. 1 (color online). (a) Interoccurrence time distributions for
the NHP process with the decaying rate (3). Symbols are
numerical simulations of the NHP process. Solid lines are
numerical integrations of Eq. (2). (b) The scaling analysis of
the distributions for �t � 150 s using Eq. (4). The solid line is a
fit of the generalized gamma function to the rescaled data.
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correlations in the recurrence times beyond the duration of
aftershock sequences. This approach agrees with observa-
tions that main shocks show a nonrandom behavior with
some effects of long-range memory [16].

Before we carry out an analysis of seismic data, we will
outline a derivation of a distribution function for interoc-
currence times between events in a point process charac-
terized by a rate r�t� and distributed according to NHP
statistics over a finite time interval T. The full analysis is
reported elsewhere [17]. The instantaneous probability
distribution function of interoccurrence times Y at time t,
until the next event in accordance with the NHP process
hypothesis, has the following form [4]:
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where r�t� is a rate of occurrence of events at the time t.
The probability density function of interoccurrence times
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0 r�u�du is the total number of events during

a time period T. In the simple case of a constant rate (r �
const), one recovers the result for the homogeneous
Poisson process, namely, PT��t��e�r�t�r�

r�t
T �

1
T� [17].

In order to check the correctness of the derivation of
Eq. (2) we have performed numerical simulations of the
NHP process with a decaying time-dependent rate r�t�.
Specifically, we have used a power-law rate defined as

r�t� �
1

��1� t=c�p
; (3)

where � is a characteristic time that defines the rate at time
t � 0, c is a second characteristic time that eliminates the
singularity at t � 0, and p is a power-law exponent. This
rate is commonly used to describe the relaxation of after-
shock sequences after a main shock and is called the
modified Omori’s law [7].

In Fig. 1(a) we show plots of numerical simulations of
the NHP process with varying scaling parameters of �, c,
and T with fixed p � 1:2. These are indicated as open
symbols. We also plot the corresponding numerical inte-
grations of Eq. (2) for the same values of �, c, and T. The
comparison shows that Eq. (2) correctly describes the
interoccurrence time distributions between events.

We have also performed a scaling analysis of our simu-
lated distributions for the values �t � 150 s. This is shown
in Fig. 1(b). The distributions collapse onto each other with
respect to the following scaling law:

P�;c;T��t� �
1

�

�
�t
�

�
��
f
�

�t
�

�
T
c

�
��
�
; (4)
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where � � 1:212 and � � 1:194. The scaling function
f�x� can be approximated by the generalized gamma func-
tion f�x� � Ax� exp��x=B�, with � � 0:056, A � 0:329,
and B � 1:122. The distribution functions have two char-
acteristic time scales, i.e., � and ��T=c��, which define two
rollovers for small and large �t’s.

To find scaling relations between the above exponents,
one has to perform an asymptotic analysis of the integral
(2) for large �t� 1 and T � 1. This analysis can be done
by using Laplace’s method [18] and gives P��t� �
�t��2�1=p� for T ! 1 and P��t� � exp	��t=��1�
T=c�p
 for finite T, from which we conclude that �� � �
2� 1=p and � � p. The exponent 2� 1=p was also
reported in [7].

To check the proposed hypothesis that aftershocks can
be modeled as a NHP process, the derived distribution (2)
has been compared to several aftershock sequences in
California. We have used the seismic catalog provided by
the Southern California Earthquake Center (SCSN catalog,
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FIG. 2 (color online). Interoccurrence time distributions for
the three California aftershock sequences for different magni-
tude cutoffs mc � 1:5; 2:0; 2:5; . . . ; 4:0. Square areas considered
are 1:25� � 1:25� for (a) the Landers sequence and 1:0� � 1:0�

for (b) the Northridge and (c) Hector Mine sequences, each
centered on the epicenters of the main shocks. In all cases, a time
interval of T � 1 yr following the main shock has been used.
The solid lines have been computed using Eq. (2).
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http://www.data.scec.org). The identification of aftershock
sequences is usually an ambiguous problem which requires
assumptions on the spatial and temporal clustering of after-
shocks [5]. In this work we assume that all events that have
occurred after a main shock within a given time interval T
and a square area L� L are aftershocks of a particular
main shock. By neglecting the magnitude, spatial size,
and duration of each individual event and considering all
aftershocks above a certain threshold mc, we map a multi-
dimensional process into a process on the one-dimensional
timeline. This marked process is characterized by the times
of occurrence of individual events ti and their magnitudes
mi. We define interoccurrence times between successive
aftershocks as �ti � ti � ti�1, i � 1; 2; . . . , and study
their statistical distribution over a finite time interval T.

In this work, we use the decay rate of aftershocks,
introduced in [19,20], which is a generalization of the
modified Omori’s law (3), where the characteristic time
c�mc� � ��p� 1�10b�m

?�mc� is a function of the lower
cutoff magnitude of an aftershock sequence mc, m? is the
maximum value of an aftershock in a sequence with finite
number of events, and p > 1. We also assume that after-
shock sequences satisfy the Gutenberg-Richter cumulative
distribution N�� m� � 10b�m

?�m�. This defines a truncated
distribution where the expected number of events with
magnitudes greater than m? is equal to one and the ex-
ponent b is generally near unity [21].

In Fig. 2 we have computed the distribution functions of
interoccurrence times between successive aftershocks
from the observed data of three California aftershock
sequences. These are indicated as solid symbols in Fig. 2.
For each of these sequences we have used square boxes of
size L� L � 1:25� � 1:25� for the Landers earthquake
(mms � 7:3; 28 June 1992) and 1:0� � 1:0� for the
Northridge (mms � 6:7; 17 January 1994) and Hector
Mine (mms � 7:1; 16 October 1999) earthquakes centered
on the epicenter of the main shocks and a time interval of
T � 1 yr. All the earthquakes that occurred in the spatio-
temporal boxes were treated as aftershocks. The analysis of
the data shows that the distributions are not too sensitive to
changes in the linear size L of the box; the results are
almost the same for L ranging from 0.25� to 1.75� within
statistical errors. This means that the distributions are
dominated by the activity of the events generated by the
main shocks and that the background seismicity does not
contribute significantly to the scaling.

In this analysis of an aftershock sequence, as a point
process we treat all earthquakes as having the same mag-
nitude, and as a result we lose a significant fraction of
information related to the physics of the process. To re-
cover some information from the magnitude domain of
each sequence, we have used a lower magnitude cutoff
mc as a scaling parameter and study sequences with differ-
ent mc’s. These are depicted by different symbols in the
plots (Fig. 2). The distributions with lower magnitude
cutoffs have a shorter power-law scaling regime and start
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to roll over more quickly. This can be explained by the
presence of more events in the sequences with lower
magnitude cutoffs and as a result the shortening of the
mean time intervals between events. Another scaling pa-
rameter which affects the rollover is the time interval T. An
1-3



FIG. 3 (color online). The scaling analysis of the interoccur-
rence time distributions of the three aftershocks sequences
according to (4). Different symbols correspond to the Landers
(p � 1:22, � � 107:25 s), Northridge (p � 1:17, � � 53:14 s),
and Hector Mine (p � 1:22, � � 83:71 s) sequences. In each
sequence the varying parameters c and T � 180, 320, and
720 days have been used. The best collapse has been found
for � � 1:25.
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increase in T leads to the occurrence of longer time inter-
vals �t between events.

To compare the observed scaling with the simulations of
a NHP process we also plot in Fig. 2, as solid curves, the
distributions computed assuming that aftershock sequen-
ces follow NHP statistics with the rate given by Eq. (3) and
the parameters �, c, and p estimated from the observed
three California aftershock sequences [19]. The plots show
that the modeled distributions are in excellent agreement
with the observations.

We have also performed a scaling analysis of the inter-
occurrence time distributions of these aftershock sequen-
ces. This is shown in Fig. 3. The characteristic time c and
the time interval T have been chosen as scaling parameters.
These sequences are characterized by slightly different
initial rates � and exponents p. The results show a reason-
ably good scaling with respect to c and T, which supports
our hypothesis that aftershock sequences can be described
to a good approximation as a NHP process.

In summary, the studies of interoccurrence of after-
shocks presented in this work suggest that aftershock
sequences can be modeled to a good approximation as a
point process governed by NHP statistics, where the rate of
activity decays as a power law [Eq. (3)]. This decaying rate
introduces a self-similar regime into the observed scaling
followed by an exponential rollover. An analysis of a non-
stationary earthquake sequence was also performed in [15].
The existence of a secondary clustering structure within the
main sequence and deviation from NHP behavior was
suggested. The knowledge of the type of distribution that
governs the occurrence of aftershocks is important in any
21850
hazard assessment programs. The derived distribution
[Eq. (2)] has much broader applicability and can be used
for studies of many time-dependent processes which fol-
low NHP statistics.
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