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Can One Predict DNA Transcription Start Sites by Studying Bubbles?

Titus S. van Erp,1,2 Santiago Cuesta-Lopez,2,3 Johannes-Geert Hagmann,1,2 and Michel Peyrard2
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It has been speculated that bubble formation of several base pairs due to thermal fluctuations is
indicatory for biologically active sites. Recent evidence, based on experiments and molecular dynamics
simulations using the Peyrard-Bishop-Dauxois model, seems to point in this direction. However,
sufficiently large bubbles appear only seldom, which makes an accurate calculation difficult even for
minimal models. In this Letter, we introduce a new method that is orders of magnitude faster than
molecular dynamics. Using this method, we show that the present evidence is unsubstantiated.
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Double stranded DNA (dsDNA) is not a static entity. In
solution, the bonds between bases on opposite strands can
break, even at room temperature. This can happen for
entire regions of the dsDNA chain, which then form bub-
bles of several base pairs (bp). These phenomena are
important for biological processes such as replication and
transcription. The local opening of the DNA double helix
at the transcription start site (TSS) is a crucial step for the
transcription of the genetic code. This opening is driven by
proteins, but the intrinsic fluctuations of DNA itself proba-
bly play an important role. The statistical and dynamical
properties of these denaturation bubbles and their relation
to biological functions have, therefore, been the subject of
many experimental and theoretical studies. It is known that
the denaturation process of finite DNA chains is not simply
determined by the fraction of strong (GC) or weak (AT)
base pairs. The sequence specific order is important.
Special sequences can have a high opening rate despite a
high fraction of GC base pairs [1]. For supercoiled DNA, it
has been suggested that these sequences are related to
places known to be important for initiating and regulating
transcription [2]. For dsDNA, Choi et al. found evidence
that the formation of bubbles is directly related to the
transcription sites [3]. In particular, their results indicated
that the TSS could be predicted on the basis of the for-
mation probabilities for bubbles of ten or more base pairs
in the absence of proteins. Hence, the secret of the TSS is
not in the protein that reads the code but really is in
characteristics of DNA as expressed by the statement:
DNA directs its own transcription [3]. In that work, S1
nuclease cleavage experiments were compared with mo-
lecular dynamics (MD) simulations on the Peyrard-
Bishop-Dauxois (PBD) model [4,5] of DNA. The method
used is not without limitations. The S1 nuclease cleavage is
related to opening, but many other complicated factors are
involved. Moreover, theoretical and computational studies
have to rely on simplified models and considerable com-
putational power. As the formation of large bubbles occurs
only seldom in a microscopic system, MD or Monte Carlo
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(MC) methods suffer from demanding computational ef-
forts to obtain sufficient accuracy. Nevertheless, the proba-
bility profile found for bubbles of ten and higher showed a
striking correlation with the experimental results yielding
pronounced peaks at the TSS [3]. Still, the large statistical
uncertainties make this correlation questionable. To make
the assessment absolute, we would need either extensively
long or exceedingly many simulation runs or a different
method that is significantly faster than MD.

In this Letter, we introduce such a method for the
calculation of bubble statistics for first neighbor interaction
models such as the PBD. We applied it to the sequences
studied in Ref. [3] and, to validate the method and to
compare its efficiency, we repeated the MD simulations
with 100 times longer runs. The new method shows results
consistent with MD but with a lot higher accuracy than
these considerably longer simulations. Armed with this
novel method, we make a full analysis of preferential
opening sites for bubbles of any length. This analysis
shows that there is no strict analogy between these prefer-
ential sites and the TSS using equilibrium statistics. Hence,
the previously found correlation must have been either
accidental or due to some nonequilibrium effect, which
remains speculative. We discuss this issue and, more gen-
erally, the required theoretical and experimental advance-
ments that could address the title’s question definitely.

The PBD model reduces the myriad degrees of freedom
of DNA to a one-dimensional chain of effective atom
compounds describing the relative base-pair separations
yi from the ground state positions. The total potential
energy U for an N base-pair DNA chain is then given by
U�yN� � V1�y1� �

PN
i�2 Vi�yi� �W�yi; yi�1�, with yN �

fyig the set of relative base-pair positions and

Vi�yi� � Di�e�aiyi � 1�2;

W�yi; yi�1� �
1
2K�1� �e

���yi�yi�1���yi � yi�1�
2:

(1)

The first term Vi is the on site Morse potential describing
the hydrogen bond interaction between bases on opposite
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strands. Di and ai determine the depth and width of the
Morse potential and are different for the AT and the GC
base pairs. The stacking potential W consists of a harmonic
and a nonlinear term. The second term was later introduced
[5] and mimics the effect of decreasing overlap between �
electrons when one of two neighboring bases moves out of
stack. As a result, the effective coupling constant of the
stacking interaction drops from K0 � K�1� �� down to
K0 � K. It is due to this term that the observed sharp phase
transition in denaturation experiments can be reproduced.
All interactions with the solvent and the ions are effectively
included in the force field. The constants K; �; �;DAT;
DGC; aAT; aGC were parametrized in Ref. [6] and tested
on denaturation curves of short heterogeneous DNA seg-
ments. These examples show that, despite its simplified
character, the model is able to give a quantitative descrip-
tion of DNA. Most importantly, it allows one to study the
statistical and dynamical behavior of very long heteroge-
neous DNA sequences, which is impossible for any atom-
istic model.

Despite these successes, it is important to realize the
limitations of the model. The PBD model treats the A and
T bases and the G and C bases as identical objects. The
stacking interaction is also independent of the nature of the
bases. Moreover, there is a subtle point that needs further
explanation. As the PBD model basically represents a
single dsDNA in an infinite solution, the probability for
complete denaturation of a molecule of finite length, re-
sulting in two single stranded DNAs, tends to unity with
increasing time at any temperature. In the experiments,
where the amount of solvated DNA is not infinitely diluted,
this effect is counterbalanced by the recombination mecha-
nism where two single stranded chains in solution come
together and match their complementary bases. Hence, in
our calculations we will restrict the configurational space
to the dsDNA only, first of all because it is a very good
approximation in comparison to experiments which are not
performed in the immediate vicinity of the denaturation
transition and, second, because it is a necessary condition
to give a relevant meaning to the ensemble averages calcu-
lated within the PBD model.

In microscopic terms, a configuration yN is called a
dsDNA molecule when yi < y0 for at least one i 2
�1:N�, with y0 the opening threshold definition. Similarly,
a configuration is completely denaturated whenever yi >
y0 for all i. The statistical average hA�yN�i is equivalent to
the ratio of two N-dimensional integrals hAi �

R
dyN 	

A�yN�%�yN�=
R
dyN%�yN�, with dyN � dyNdyN�1 . . . dy1

and % the probability distribution density. Numerical inte-
gration calculates these integrals explicitly, while MD and
MC calculate only the ratio. Usually, the dimensionality of
the system prohibits direct numerical integration, making
MD and MC far favorable. However, an increase of the
computational efforts by a factor of 2 reduces the error by
only a factor of

���
2
p

in MD and MC, while the reduction can
be quite dramatic in low-dimensional systems using nu-
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merical integration. In the following, we show how to
exploit this by creating an effective reduction of the di-
mensions, yielding an orders-of-magnitude faster algo-
rithm for the bubble statistics calculation. To explain the
algorithm, we need to define a set of functions

�i�yi� � ��yi � y0�; ��i�yi� � ��y0 � yi�; (2)

where ��y� equals the Heaviside step function. �i equals 1
if the base pair is open and is zero otherwise. ��i is the
reverse. These functions indicate whether a base pair is
open or closed. Using these, we define

��m�i � ��i�m=2
��i�m=2�1

Yi�m=2

j�i�m=2�1

�j for m even

� ��i��m�1�=2
��i��m�1�=2

Yi��m�1�=2

j�i��m�1�=2

�j for m odd (3)

which are 1 (0 otherwise) if and only if i is at the center of a
bubble that has exactly size m. To shorten the notation, we
have dropped the yi dependencies. For even numbers, it is a
bit arbitrary where to place the center, but we defined it as
the base directly to the left of the midpoint of the bubble. In
order to have these quantities defined also near the ends of
the chain, we use ��i � 1 for i � 0 and i � N � 1. The
properties of interest are the probabilities for bubbles of
size m centered at base pair i provided that the molecule is
in the double stranded configuration.

h��m�i i� �
h��m�i �i
h�i

�
Z��m�i

Z� Z�
with � � 1�

YN
i�1

�i:

(4)

Here � � 1 except when all bases are open; then � � 0.
The partition function integrals are given by:

Z �
Z
dyNe��U�y

N�; Z��m�i
�
Z
dyNe��U�y

N���m�i ;

Z� �
Z
dyNe��U�y

N� 	
Y
j

�j: (5)

Note that both Z as Z� are infinite, but their difference
is well defined. Now we can make use of the fact that
all integrals ZX are of the factorizable form ZX �R
dyNa�N�X �yN; yN�1� . . .a�3�X �y3; y2�a

�2�
X �y2; y1� using the

following iterative scheme:

z�2�X �y2� �
Z
dy1aX�y2; y1�;

z�3�X �y3� �
Z
dy2aX�y3; y2�z

�2�
X �y2�; 
 
 
 ;

z�N�X �yN� �
Z
dyN�1aX�yN; yN�1�z

�N�1�
X �yN�1�;

ZX �
Z
dyNz

�N�
X �yN�:

(6)

The calculation of z�i�X �yi� for a discrete set of ngrid values yi
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requires only n2
grid function evaluations whenever z�i�1�

X is
known. Hence, a total of Nn2

grid function evaluations are
required instead of nNgrid, which is a huge improvement.
Further improvement can be obtained by introducing
proper cutoffs for the numerical integration. We use inte-
gration boundaries such that for all i: L < yi < R and jyi �
yi�1j< d, which we control by a single input parameter �:
d �

�����������������������
2j ln�j=�K

p
, L � ��1=aAT� ln�

��������������������������
j ln�j=�DAT

p
� 1�,

and R � y0 �
����
N
p

d. Any configuration outside this range
but with at least one base pair closed will have a proba-
bility density smaller than �=�Z� Z��. A strong decrease
in the parameter � will only marginally increase the inte-
gration boundaries. We took � � 10�40, which is much
smaller than necessary for our accuracy. After storing
the following function values in matrices M�AT=GC�

ij �

exp����VAT=GC�L� i�y��W�L� i�y;L��i� j��y���
with 0 � i � INT��R� L�=�y� and �INT�d=�y� � j �
INT�d=�y�, we can reduce the integral operations for
Eq. (6) (using Simpson’s rule) into inexpensive multipli-
cation and addition operations only.

As a first investigation, we applied this new method to
the adeno-associated viral P5 (AAVP5) promoter and the
mutant from Ref. [3] using y0 � 1:5 as the opening thresh-
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P5:5’-GTGGCCATTTAGGGTATATATGGCCGAGTGAGCGAGCAGGATCTCCATTTTGACCGCGAAATTTGAACG-3’
MU:5’-GTGGCCATTTAGGGTATATATGGCCGAGTGAGCGAGCAGGATCTCCGCTTTGACCGCGAAATTTGAACG-3’
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FIG. 1 (color). The probability of bubble opening as a function
of bubble size and position for the AAVP5 promoter and the
mutant sequence at 300 K. Probabilities in each row are nor-
malized by a different factor 	�m� � MAX�h��m�i i�� for i 2
�1:N� given in the lower panel. The 69 bp sequences start at
index �46 and end at �23. The TSS is at �1, the mutation is at
��1;�2� where �A;T� bases are replaced by �G;C�. Contrary to
Ref. [3], the mutation effect is very local.
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old, which corresponds to 2.1 Å in real units. To make the
comparison with MD which uses periodic boundary
conditions (PBC), we replicated the chain at both ends
but computed only the statistics for the middle chain.
This approach is cheaper than true PBC, which scales as
N 
 �ngrid�

3. The full probability matrix h��m�i i� was calcu-
lated for the middle sequence up to bubbles of size m �
50. A fraction of this matrix is presented in Fig. 1 in a color
plot. In agreement with Ref. [3], we find preferential open-
ing probabilities at the TSS site at �1 that vanish after the
mutation. But, contrary to the results of Ref. [3], we find
that the TSS is not at all the most dominant opening site.
Stronger opening sensitivity is found at the �30 region.
Moreover, at variance with the previous established find-
ings, Fig. 1 shows that the mutation effect is very local. In
Fig. 2, we make a projection by looking at the probability
Pi �

PN�1
m�10h�

�m�
i i� that at site i one can find a bubble of

size 10 or larger. We compared different boundary con-
ditions and two values for y0. In addition, we made the
comparison with MD [7] by performing 100 simulations of
100 ns with different friction constants � in the Langevin
MD and 10 simulations of 1 �s using Nosé-Hoover. The
curves matched within the statistical errors and agreed with
the integration method (see, for instance, Fig. 2 where the
Langevin � � 10 results are plotted together with the
results of the integration method).

We obtained relative errors around 10% for Nosé-
Hoover and Langevin with � � 10 and 5 ps�1. The errors
of � � 0:05 ps�1, used in Ref. [3], were considerably
larger due a stronger correlation between successive time
steps. The results of Ref. [3] were based on 100 times fewer
statistics. Hence, the corresponding errors in Ref. [3] must
have been 10 times larger, which can explain the variance
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FIG. 2 (color). The probabilities for bubbles larger than 10 bp
for the AAVP5 promoter and the mutant at 300 K. Both semi-
PBC (threefold replicated system) and loose ends (single chain)
are compared and two values for the opening threshold y0 � 1:0
and y0 � 1:5. MD results (black) for y0 � 1:5 with PBC are also
given with corresponding error bars. A change of scale in the y
axis is applied to include the higher openings at the free
boundaries. All results agree but are different from the less
accurate results of Ref. [3]. The mutation and the free boundaries
have only a local impact on the bubble statistics.
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FIG. 3 (color). Same as Fig. 2 for the 86 bp AdMLP and the
63 bp nonpromoter control sequences. The biologically non-
active control sequence shows considerable opening probability,
even more than the biologically active AdMLP promoter.
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with our results. Another explanation could be that the
results of Ref. [3] are due to some out-of-equilibrium or
dynamical effects. Such effects depend strongly on the
choice of initial conditions, which poses the problem of
defining biologically significant initial conditions and de-
termining, in a meaningful way, the relevant time scale
along which the simulations have to be carried to detect
such nonequilibrium phenomena.

The principal error in the new method is due mainly to
the finite integration steps. To estimate the accuracy, we
compared �y � 0:1 and 0.05 with the almost exact results
of �y � 0:025. Using the TSS peak of the AAVP5 se-
quence with free boundaries as reference, we found that the
systematic error drops from �5% to 0.03% for CPU times
of 40 minutes and 3 hours only. For comparison, the last
accuracy would take about 200 years with MD on the same
machine. The evaluation of larger bubbles becomes in-
creasingly more difficult for MD. Bubbles of size 20
showed statistical errors >100%, while these were only
slightly increased for the integration method. It is interest-
ing to note that the 10 bp size is more or less the upper limit
for which one gets sufficient accuracy using MD, while it is
a lower limit where its relation to biophysics becomes
interesting [8], stressing the importance of our method.
Finally, we calculated the Pi probabilities for the adeno-
virus major late promoter (AdMLP) and a control non-
promoter sequence (Fig. 3). Also here, our results violate
the TSS conjecture. The TSS shows some opening but
cannot be assigned on the basis of bubble profile only.
Surprisingly, even the control sequence shows significant
opening probabilities.

To conclude, we have shown that MD (or MC) encoun-
ters difficulties to give a precise indication of preferential
opening sites. In particular, information of large bubbles is
not easily accessible using standard methods. The method
presented here is orders of magnitude faster than MD
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without imposing additional approximations. Using this
method, we showed that the TSS is generally not the
most dominant opening site for bubble formation. These
results contradict foregoing conjectures based on less ac-
curate simulation techniques. However, to address the
title’s question, definitely, there are still many issues to
be solved. Still, there is some chance that bubble dynamics
rather than bubble statics is indicatory for the TSS.
Speculatively, the previously found correlation could be
justified using this argument. However, a statistical signifi-
cant foundation for this is lacking, and it is highly ques-
tionable whether the PBD model and this type of Langevin
dynamics can give a sufficiently accurate description for
the dynamics of DNA. The PBD model could and, proba-
bly should, be improved to give a correct representation of
the subtle sequence specific properties of DNA. Base
specific stacking interaction seems to give better agree-
ment with some direct experimental observations [9]. Also,
the development of new experimental techniques is highly
desirable. Our method is not limited to the PBD model or
to bubble statistics only, but it works whenever the proper
factorization (6) can be applied. Therefore, we believe that
the technique presented here will remain of importance for
future investigations of bubbles in DNA and their biologi-
cal consequences.
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