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Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits
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Transmission metallic gratings with subwavelength slits are known to produce enhanced transmitted
intensity for certain resonant wavelengths. One of the mechanisms that produce these resonances is the
excitation of waveguide modes inside the slits. We show that by adding slits to the period, the transmission
maxima are widened and, simultaneously, this generates phase resonances that appear as sharp dips in the
transmission response. These resonances are characterized by a significant enhancement of the interior
field.
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FIG. 1. Scheme of the simple and compound gratings.
In the last few years, considerable attention has been
paid to the study of gratings with subwavelength slits due
to the experimental evidence of extraordinary transmission
in 2D arrays of holes in a metallic film [1,2]. Even though
there is not complete agreement within the scientific com-
munity on the physical origin of this phenomenon [3], in
the case of 1D structures two different mechanisms can be
identified as responsible for this phenomenon: surface
plasmon excitations and coupling to waveguide modes of
the slits [4,5]. These are two of the four mechanisms
known to produce anomalies in the response of metallic
gratings. The appearance or disappearance of a diffracted
order can also produce a sudden change in the diffracted
efficiency. These anomalies are known as Rayleigh anoma-
lies [6]. There is a fourth kind of resonances that might rise
in a periodic grating when its period comprises several
cavities or slits. For a particular wavelength, the field
distribution inside the different cavities/slits takes a par-
ticular form so that its phase in adjacent cavities can be
opposite to each other and its amplitude maximizes the
inner field. These are known as phase resonances [7–9],
and were first reported in structures comprising a finite
number of cavities on a perfect conductor [10,11]. The
addition of cavities/slits to the period of the grating intro-
duces new degrees of freedom regarding the possible near
field configurations. The condition of pseudoperiodicity of
the fields imposes that all periods of the grating are equiva-
lent. In the case of a simple grating—formed by a single
groove or slit in the period—this implies that, with the
exception of a phase factor, all the grooves have the same
field. On the other hand, a compound grating—formed by
several grooves/slits in the period—allows for different
phase configurations inside each period, and this can lead
to resonances and to sudden variations of the diffracted
efficiency.

In Fig. 1 we schematize the transmission gratings under
study; only one period is shown. Grating (a) is the simple
transmission grating, with a single slit of width a in the
period d. The number of slits in the period is J. Each period
of grating (b) comprises two slits (J � 2) of equal width,
separated by a thin wire of width c. Cases (c), (d), and (e)
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correspond to J � 3, 4, and 5, respectively. The number of
thin wires in the period is J� 1. We consider that the
grating is illuminated at normal incidence by a
p-polarized plane wave of wavelength �. The reflected
and the transmitted magnetic fields are represented by
Rayleigh expansions. Then the field in the incident and
in the transmission medium are given by

Hz inc�x; y� � exp�i��0x� �0y��

�
X
n

Rn exp�i��nx� �ny��; (1)

and

Hz trans�x; y� �
X
n

Tn exp�i��nx� �ny��; (2)

respectively, where �n � �2�=�� sin�0 � n�2�=d�, �2
n �

�2�=��2 � �2
n, �0 is the angle of incidence, and Rn and Tn

are the reflected and transmitted Rayleigh amplitudes,
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FIG. 2. Zero-order transmittance as a function of the wave-
length for a normally incident, p-polarized plane wave imping-
ing on a metallic grating with a=d � c=d � 0:08 and
h=d � 1:14. The refraction index of the metal is 	 � 0:15�
i24:9. The different curves correspond to different numbers of
slits in the period: J � 1 to 5.
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respectively. Inside the slits the fields are expanded in
terms of eigenfunctions that take into account the surface
impedance boundary condition (SIBC) on the lateral walls
of each slit [12]:

Hzslits�x;y��
X1
m�0

�
cos�um�x�xj���

�
um

sin�um�x�xj��
�

�famjcos�vmy��bmj sin�vmy�g; (3)

where u2
m � v2

m � k2, � � �ik=
�������������
�m�m
p

, and the eigen-
values um are found by solving the following equation,
which results from the imposition of the boundary con-
ditions at the walls of the slits:

tanuma �
2�um
u2
m � �2 : (4)

The xj are the positions of the left wall of each slit (the
subscript j denotes the slit), �m and�m are the permittivity
and the permeability of the metal, respectively, and amj and
bmj are complex amplitudes. The fields are matched on the
horizontal boundaries by imposing the continuity of the
tangential components in the open sections, and by apply-
ing the SIBC in the metallic regions. This method leads to a
system of coupled equations that are projected in conve-
nient bases to get a matrix system for the unknown re-
flected and transmitted amplitudes.

In Fig. 2 we show curves of transmitted intensity vs
wavelength, for a sequence of gratings with an increasing
number of slits (J) in the period. In the lower curve, for
J � 1, we observe a peak at �=d 	 1:4 and another peak at
�=d 	 3. As explained by other authors [5], these peaks
are associated with waveguide mode resonances. The num-
ber of propagating eigenmodes increases with the depth of
the grating. For a perfectly conducting structure, wave-
guide mode resonances are expected to occur at � � 2h=n,
with n integer. In the highly (but finitely) conducting case,
we found that a better estimate of the location of these
resonances can be obtained by imposing the condition

Re fvmhg � n�: (5)

Since we consider slits that are narrow compared with the
wavelength, the only propagating mode is the first eigen-
mode corresponding to m � 1 in Eq. (5). The same two
peaks that appear in the lower curve are present in the next
curve, corresponding to a period comprising two slits (J �
2). Both peaks are widened and slightly shifted. A signifi-
cant change in the behavior is found for three slits in the
period (J � 3): a sharp dip splits each peak into two. This
behavior is also found in the J � 4 curve, and in this case
the dip has slightly shifted to longer wavelengths. Finally,
for five slits in the period (upper curve), one more dip
appears in each waveguide resonance peak.

The physical origin of these dips can be explained in
terms of phase resonances. It is well known that in a
perfectly periodic grating the treatment of the diffraction
21740
problem can be reduced to just a single period, due to the
pseudoperiodic condition. Then, the fields in all slits or
cavities of a simple grating are essentially equal. However,
when we add slits to the period, i.e., when we make a
compound grating, new degrees of freedom open up: the
distribution of field phases in the different slits that com-
prise the period can have different configurations. Since we
are considering narrow slits, the field inside each slit is
almost constant in the x direction. Besides, under normal
incidence, the possible phase configurations must be sym-
metrical. Then, the number of possible phase configura-
tions is finite and depends on the number of slits. For
instance, for three slits in the period, there are only two
possible configurations: (i) all the slits have equal phase
�� ���, and (ii) the external slits have equal phase,
different from the central one. In general, two requirements
are needed for a phase resonance to occur: (i) at least one
nonzero phase difference is found between the field phases
in adjacent slits—what is not allowed in simple periodic
structures—and (ii) a particular distribution of the field
amplitude, naturally generated by the incidence conditions,
is obtained [11]. Phase resonances are also characterized
2-2
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by a strong intensification of the field inside the slits/
cavities, and at the same time, by a significant power
absorption. In particular, when the phases in adjacent slits
are opposite to each other, � resonances can be excited
[11]. These two conditions are usually fulfilled near the
waveguide mode resonant wavelength. For one or two slits
in the period, different phases in adjacent slits cannot
occur, and therefore no phase resonance is present. For J �
3, the�mode can be excited, and this is the case of the dips
that appear in each one of the waveguide resonance peaks
(at �=d 	 1:4 and 3). In Fig. 3 we plot the absolute value of
the phase difference (j�
jce) between the fields at the
central and the external slits (evaluated at the top surface
of the structure, at the horizontal center of each slit), as a
function of �=d. We only show curves for J � 3 and J �
5, since for J � 1 there is only a single slit in the period
and for J � 2 under normal incidence, the phase difference
must be zero, as expected on symmetry considerations. In
the lower curve (J � 3) j�
jce is nearly zero for most of
the range of wavelengths considered, except for two dis-
tinct wavelengths at which it takes the � value, and these
wavelengths correspond to the dips in Fig. 2 (J � 3 curve).
In Fig. 4 we show contour plots of the phase of the
magnetic field at those resonant wavelengths. It can be
observed that the phase distribution of the field at both
wavelengths are of the type �� ���; i.e., the phases in
adjacent slits are opposite. Besides, significant intensifica-
tions of the field inside the slits are obtained, the intensi-
fication factors being at around 20 and 40 for the first and
second dip, respectively, (not shown). For other wave-
lengths, the intensification does not exceed 7. It is also
clear from Fig. 4 that the longer wavelength dip corre-
sponds to the first waveguide mode of the slit (h 	 �=2)
and the shorter one corresponds to the second mode (h 	
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FIG. 3. Phase difference of the magnetic field at adjacent slits
as a function of the wavelength for the same structure considered
in Fig. 2, for J � 3 and J � 5.
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�). For J � 4, as for J � 3, there is only one possibility of
having different phases in adjacent slits, due to the sym-
metry imposed by the normal incidence condition, and the
phase difference curve vs wavelength is very similar to the
lower curve in Fig. 3 (not shown). We have checked that
the dip observed in the J � 4 curve in Fig. 2 corresponds to
a phase configuration �� ����. However, for J � 5 we
can have more combinations of phase distributions, and
this can be observed in the upper curve in Fig. 2: an
additional dip appears in each peak. The deeper dips
correspond to a phase mode of the type �� �����,
and in the new ones the central slit phase is opposite to the
phase of its adjacent slits and the external ones have a �=2
phase difference with their adjacent slits. Also, the ampli-
tude distribution of the field in each mode is different. The
phase difference between the central and the middle slits,
and between the middle and the external slits is plot in the
upper curve in Fig. 3. There are two wavelengths at which
(b)
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FIG. 4. Phase of the magnetic field for a normally incident
p-polarized plane wave impinging on a metallic grating with
a=d � 0:08, h=d � 1:14, and J � 3. The refraction index of the
metal is 	�0:15� i24:9. (a) �=d � 1:372, (b) �=d � 3:004 96.
The inset in part (a) shows the region where the field is
calculated.
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FIG. 5. Comparison between the J � 3 curve in Fig. 2 (solid
line) and the transmission response of a grating with a single slit
of width a=d � 0:24, which is 3 times that corresponding to the
solid curve (dashed line). The dotted curve corresponds to J � 3
and a=d � 0:15.
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j�
jexternal�middle is � and j�
jmiddle�central is 0, at which
the deeper dips of the upper curve in Fig. 2 are found.
However, there are two new distinct wavelengths at which
there is a nonzero phase difference between adjacent
grooves, which gives rise to the new dips in the J � 5
case. From the sequence of Fig. 2, it is also clear that as the
number of slits increases, the waveguide resonance peaks
widen. This fact is interesting from the point of view of the
enhanced transmission, since we can get an enhanced
response for a wider frequency range. However, this wid-
ening is obtained at the expense of having dips in between.
On the other hand, the dips are interesting by themselves,
since they provide a way of getting very intense fields
inside the slits, which can be exploited for the obtention
of nonlinear effects. In the whole range of wavelengths
considered, the transmission for s polarization is practi-
cally null.

One would think that the widening of the peaks could be
due to the fact that the ratio between the empty and the
filled part of the grating (occupation ratio) increases when
slits are added to the structure. To explore this possibility,
we plot in Fig. 5 the transmittance curves for two different
gratings with equal occupation ratio. The solid curve cor-
responds to a compound grating with three slits (the J � 3
curve in Fig. 2) and the dashed one corresponds to a simple
grating with a slit 3 times as wide as the slits of the
previous one. It can be noticed that the dip only appears
for the compound grating. Besides, in such case the peaks
are wider than in the simple grating, suggesting that the
widening is not only due to an increase in the occupation
ratio, but also to a structural effect.

The effect of varying the width of the slits is also
illustrated in Fig. 5, where the solid curve is to be com-
pared with the dotted one, which corresponds to the same
21740
parameters but with a=d � 0:15. In this case, the overall
transmittance increases due to a larger occupation ratio, but
the dips are still present, although slightly shifted. This
behavior was confirmed for several widths (not shown),
suggesting that the phase resonances responsible for the
dips are not highly dependent on this parameter.

For non-normal incidence, new phase configurations
that were forbidden by the normal incidence symmetry
are allowed. For instance, we have observed that a dip is
found for a structure with two slits per period (J � 2) for
�0 � 40
, and this dip corresponds to the � mode. Notice
that no phase resonances occur for J � 2 under normal
incidence (Fig. 2).

In conclusion, we have shown that compound transmis-
sion gratings can exhibit a transmission response very
different from that of simple gratings. While for simple
gratings with subwavelength slits transmission maxima
are observed for the slit waveguide mode resonant wave-
lengths, for compound gratings these peaks are signifi-
cantly widened. Besides, we have shown that phase
resonances, characterized by a particular distribution of
the phase of the field inside the slits, take place for wave-
lengths contained in each peak and that the mechanism of
phase resonance is manifested as sharp dips in the trans-
mittance and also by a significant enhancement of the
interior field. The capability of exciting phase resonances
in compound gratings opens up new possibilities for prac-
tical applications, such as polarization sensitive aperture
shapes for field enhancement devices.
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