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Magnetic Exchange Interactions in Quantum Dots Containing Electrons and Magnetic Ions
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We present a theory of magnetic exchange interactions in quantum dots containing electrons and
magnetic ions. We find the interaction between the electron and Mn ion to depend strongly on the number
of electrons. It can be switched off for closed shell configurations and maximized for partially filled shells.
However, unlike the total electron spin S which is maximized for half-filled shells, we predict the
exchange interaction to be independent of the filling of the electronic shell. We show how this unusual
effect manifests itself in quantum dot addition and excitation spectrum.
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There is currently interest in nanospintronics, i.e., con-
trolling spin-related phenomena on the nanoscale [1-16].
Quantum dots with a single magnetic ion have been re-
cently realized by Besombes et al. [13]. A single magnetic
ion on a solid state surface has been probed by a spin-flip
STM [9], by tunneling in a break junction [1], by STM in
bulk GaAs [11], and both Mn-doped nanocrystals [5,6] as
well as quantum dot tunneling devices embedded in a
magnetic barrier have been investigated [7]. Theo-
retically, interaction of carriers with magnetic impurities
in quantum wells [4], nanocrystals [6—8], and quantum
dots [5,14-16] has been investigated, including a mean
field theory of noninteracting electrons interacting with
large number of Mn ions [14]. In this Letter we present a
theory of a hybrid nanoscale system consisting of a single
magnetic ion placed in a controlled electronic environment
provided by a quantum dot (QD) filled with N electrons, an
artificial atom.

We consider a quasi-two-dimensional quantum dot with
parabolic confinement, a model suitable for self-assembled
quantum dots [17], containing N interacting electrons, and
a single magnetic Mn ion, described by the Hamiltonian:
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The first term in Eq. (1) corresponds to the sum of the one-
electron Hamiltonians, the second term describes electron-
electron Coulomb interactions, and the third term describes
sp-d contact exchange interaction between Mn ion at
position R and N electrons at positions 7; = (x;, y;). The
single-particle states and energies of an electron in a
parabolic QD correspond to two coupled harmonic oscil-
lators with quantum numbers m and n, i.e., @,,(x,y) =
©m(x)@,(y), where ¢,,(x) is the wave function of a one-
dimensional harmonic oscillator. The first three states are
listed here: @q(x) = e ¥/*/Qm2)*, ¢(x) = xe™*/*/
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Qa4 and @,(x) = (x2 — 1)e /4 /(8r2)/4, with
x = x/€y and €, = 1/,/w,. Here w, is shell spacing, and
length and energy are measured in effective Bohr radius ag
and effective Rydberg Ry. The corresponding single-
particle energies are E,,, = (n + m + 1)w,, with degen-
erate electronic shells with degeneracy g, = (n + m + 1)
and shell spacing wg. The electron-electron interaction
V(F; — F;) = e*/(elF; — F;|) is approximated by 2D
Coulomb interaction, with e being electron charge and &
the dielectric constant. The finite thickness d of quantum
dot is known to change the quantitative but not the quali-
tative effects of e-e interaction [18].

The short ranged electron-Mn sp-d exchange interac-
tion is modeled here by contact interaction, with strength
JZP = J,.2/d, where J. is bulk exchange constant. In what
follows we adopt J. = 15 eV A3 [14], d =2 nm, & =
10.6, m* =0.106, Bohr radius az =529 A, Ry =
12.8 meV, with typical wy =4 Ry and effective width
Iy = 26.45 A, applicable to II-VI (Cd, Mn)Te semiconduc-
tor QDs.

For computational purposes, we denote single-particle
states {n, m} = {i}, and transform the Hamiltonian into
second quantization form by expanding the electron field
operators iy = > io®ilx, y)x,c;, in orbital and spin ei-
genstates and annihilation (creation) c;,, (c;,) operators.
The key novelty is the electron-magnetic ion scattering
term, known from the Kondo and Anderson models, given

by  Hanta = —IPY, 00 ([ die" (DS(F — R)p;(F) X
(XS )(,,)MCZQ,C(,-,(#. Integrating out position and spin de-
grees of freedom results in a Hamiltonian Hg .\, =
—Z,-,j,W/J,-j(R)f(m/Mcfacj,,,/ which involves exchange
matrix elements J;;(R) = JZ° ¢ (R)¢,(R), Pauli spin ma-
trices S o.o'» and Mn spin operators. The exchange matrix
elements J;;(R) are determined by the wave function of the
two states (i, j) at the position R of the Mn ion. The
electron-Mn exchange interaction combines two effects:

flipping of electron spin simultaneous with flipping of Mn
ion spin, and scattering of electrons between different
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orbitals, i.e., disorder. We can bring these effects out by
rewriting the exchange Hamiltonian in terms of Mn spin
rising and lowering operators M+, M~ with the final form
of the Hamiltonian:
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where E; ; is energy of an electron on the single-particle
orbital |i) with spin o;. The two-body Coulomb matrix
elements (i, j|V,.|k, [) [18] scatter electrons from states
|ka', lo) to states |io, jo'). The last term in Eq. (2) is the
electron-Mn Hamiltonian which consists of three terms.
The first term measures difference in spin-up and -down
population and acts as Zeeman energy while the second
and third term involves flipping of electron spin compen-
sated by the flipping of Mn spin.

To calculate the electronic properties of the interacting
electron-Mn system we expand the wave function in the
following basis: |iy, iy, ..., iyplJj1, jo - - -» Jn)IMz), where
liy, ig, ..o, ing) = C:,TCZ,T ... ciJ;,Tl(»’ |0) is the vacuum, and
N T (N|) is the number of spin-up (-down) electrons, N {
+N |= N. The basis states are grouped into spin-up and
spin-down electron states for each state of the Mn ion |M),
with M, = *+5/2, £3/2, +1/2. The number of possible
configurations is determined by the number of single-
particle orbitals Ng, the number of electrons, and the size
M of the magnetic ion spin Nc = 2M + 1) Z%lzo(%i)(%?)'
Using the basis states we calculate the Hamiltonian matrix
which upon diagonalization gives the eigenergies and ei-
genstates of a single Mn and N interacting electron com-
plex. Then, the strength of magnetic interaction can be
investigated in terms of energy shift A, defined by the
difference between the ground state energy of single Mn-
doped (E.) and undoped (E,) QDs. Because this energy
splitting can be thought of as induced by a local magnetic
field produced by the magnetic moment of Mn ion, we call
it the local Zeeman spin splitting.

Note that in the absence of electron-Mn exchange inter-
action, Coulomb interaction conserves the total angular
momentum and z component of the total spin of electrons.
Hence the diagonalization of the Hamiltonian can be per-
formed separately for each (L., S;.) subspace. In a Mn ion
doped QD, however, electron-Mn exchange interaction
induces coupling between electronic configurations with
different total spin of electrons and/or different total angu-
lar momentum, breaking down the symmetry. As a result,
the diagonalization has to be performed in the entire
Hilbert space, considerably increasing computational ef-
fort in comparison with that needed for an undoped QD.

The effect of the Mn ion is determined by the electron-
Mn exchange interaction matrix elements. The scattering

involves occupied and empty states, and hence predomi-
nantly states in the vicinity of the Fermi level are involved.
This opens up the possibility of engineering matrix ele-
ments by moving the Fermi level with increasing the
number of electrons, and by moving the Mn ion position
with respect to the center of the quantum dot. Fig-
ure 1 shows the exchange parameter (m’, n'|J(R)|n, m) =
JP @ w(R) @ (R) as a function of Mn position R evalu-
ated using harmonic oscillator states in Cartesian coordi-
nates for s shell [Fig. 1(a)], p shell [Fig. 1(b) and 1(c)], and
d shell [Fig. 1(d)-1(f)]. In the s shell the J,, = {0, 0|J|0, 0)
matrix element decays as we move Mn away from the
center of the quantum dot. For the p shell, the two matrix
elements (1, 0|J]0, 1) and (0, 1|J|1, 0) are zero at R = 0,
have a maximum at finite R, and zeros along the X or Y
axis. By choosing our coordinate system in such a way that
R = (X, 0) we see that Mn can be coupled to one of the two
p orbitals. The situation is similar in a d shell. There are 3
orbitals shown. For a position of Mn X = [, we have
coupling to only one of the d orbitals as one of the orbitals
has always a node in this direction, and a second one has a
node at this distance from the center of the dot. Hence we
see that we can engineer Mn position so it will be coupled
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FIG. 1. Exchange matrix elements as a function of Mn position
R for a QD with wy = 4 Ry, d = 20 A for s shell (a), p shell (b)
and (c), and d shell (d), (e), and (f). Empty circle indicates the
position of Mn ion used in our calculation.
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to only one of the three states of the d shell. Figure 1
clearly illustrates the potential for using Mn ion position as
a tool in engineering magnetic interactions.

We now choose the position of Mn R = ([, 0), and
calculate the ground state energy of the full interacting
system as a function of the number of electrons N. Figure 2
shows the calculated energy shift A, A = |E.(R) — E,|.
The calculations are done in a limited Hilbert space of
each partially filled shell. The solid line shows schemati-
cally the total spin of the ground state of the dot as a
function of the number of electrons N. The total spin is
zero for closed shells at N =2,6,12,... and reaches
maximum for a half-filled shell, i.e., N = 1 for s shell,
N = 4 for a p shell, and N = 9 for a d shell [18,19]. One
might expect that A is proportional to the total spin S of
electrons. However, Fig. 2 shows a very different and
unexpected behavior of A with increasing number of elec-
trons. We find for closed shells A = 0, which one expects
for total electron spin S =0 from effective exchange

interaction of the form Hg.y, = —~JS§-M, with some
effective exchange constant J. However, for partially
filled shells we find A to be independent of the filling
of the shell despite the fact that the total calculated spin
of the ground state, shown in Fig. 2, varies with shell
filling. This can be understood in two ways. One is to think
of total spin S and effective exchange coupling J. When S
increases with the filling up of a degenerate shell, effective
J decreases. An alternative point of view, supported by
Fig. 1, is that Mn spin couples effectively to only one
electron of the electronic shell, irrespective of the shell
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FIG. 2 (color online). Local Zeeman spin splitting A = |(E, —
E,)| vs number of electrons N for a QD with wy =4 Ry, d =
20 A, and R = I, calculated using a limited Hilbert space. The
corresponding exchange parameters are indicated by J, J,,,
and J;,, respectively. Inset shows results of numerical calcula-
tion including all configurations of s, p, and d shells.

filling, canceling all many-particle contributions. This can-
cellation is no longer perfect when higher shells and ex-
citations from filled shells are included. The inset in Fig. 2
shows the calculated shift A including all configurations of
the s, p, and d shells. We find that A is no longer exactly
zero for closed shells, and it shows small oscillation across
the d shell. The important point is that the results presented
here are independent of Mn position for up to N =6
electrons, as clearly shown in Fig. 1. For higher electron
numbers N > 6 we find the cancellation of many-particle
contribution to become more sensitive to Mn position other
than the one shown in Figs. 1 and 2, but the general trend
remains.

One of the methods to observe this unusual behavior is
either capacitance [20] or Coulomb blockade spectroscop-
ies [2,19-21]. In both cases one measures addition energy
equal to the chemical potential of the dot. The chemical
potential is defined as the difference of total energies
m(N) = E(N) — E(N — 1). The effect of Mn ion on the
chemical potential of N electron QD can be extracted from
the difference of chemical potentials of Mn ion doped and
undoped dots. In Fig. 3(a) we show the difference of the
chemical potential Ay = u. — u, of the QD with and
without Mn ion as a function of N. This change of the
chemical potential shows a characteristic behavior related
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FIG. 3. (a) Difference of the chemical potential Ay = u, —
M. between a single Mn ion doped and undoped quantum dot as
a function of the number of electrons N. Spectral function for
adding an electron with spin-down to s level of an empty QD (b),
and to p shell of N =2 QD (c) with wy = 4 Ry and d = 20 A.
For comparison, the spectral function of QD without Mn ion is
shown as a dotted line in (b) and (c).
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to Fig. 2. We see a negative shift for N = 1 and a positive
and equal shift for N = 2. The N = 1 shift measures —A.
For N =2 the two-electron dot has a closed shell, its
energy is not modified by the presence of Mn ion, and
the shift is now +A. For N = 3 we measure —A for a 3
electron dot. For N = 4, i.e., in the half-filled shell, the
shift in the energy of the N electron and N — 1 electron dot
is identical and cancels in the chemical potential. Hence in
the vicinity of half-filled shells we see no effect of Mn ion
on addition energy, the effects are only visible when elec-
tron number N crosses from one shell to the next one. Even
more dramatic manifestation of the presence of Mn ion can
be obtained from the high source and drain spectroscopy
[2,21] which measures the spectral function A(m, o, w) =
SPY AN + ey uolis N)|*6(E; — E; — w) of the
quantum dot in state ““i” and probability P;. In lower
part of Fig. 3 we show examples of spectral functions.
Figure 3(b) shows the spectral function for adding an
electron with spin-down to s level of an empty quantum
dot containing Mn ion. In the absence of Mn ion the
spectral function, shown as a dotted line, is a single peak
A(s, |, ) = 6(wy — w). However, for a dot with Mn ion
the spectral function (solid lines) breaks into two pieces,
Als, ], w) =A_8(wyg — Jgy — w) + AL 8(wy + 2], — w),
separated by 3J,,. This can be understood by examining
the effective exchange Hamiltonian H,_y, = —J SM . For
S = 1/2 there are two possible values of total spin J. =
M * 1/2. The two total spin values generate two degener-
ate groups, with degeneracy 2J. + 1, and the two groups
of degenerate states are probed by the added electron.
When magnetic field is applied, the degeneracies are re-
moved and peaks split into groups of five and seven, a
direct manifestation of the presence of Mn ion. A similar
situation is encountered for a dot with N = 2 electrons and
Mn ion when adding extra electron to a p shell, as shown in
Fig. 3(c). The spectral function now splits into 3 pieces.
The origin of the two extreme pieces, separated by ~6J,,,
is analogous to the s shell, and a third central piece
represents the orbital not directly coupled to Mn ion. The
indirect coupling with closed s shell electrons does lead to
a small splitting of degenerate Mn levels. The application
of weak magnetic field would reveal proper degeneracies
associated with Mn ion.

We can now compare the effect of Mn ion and quan-
tum dot confinement on electron properties. Quantum
confinement leads to quantization of energy levels with
large spacing w, but degenerate with respect to spin. The
effect of Mn ion is to remove the spin degeneracy of energy
levels of electron and of Mn ion. The scale of the effect
presented here is measured in terms of exchange coupling
Jss. The scale of this coupling is proportional to level
spacing, J,, ~ wo. The smaller the dot, the larger the
spacing. Hence the coupling of an individual electron to
Mn ion in a quantum dot is enhanced due to electron
confinement. For a model investigated here J, is found
to be 0.21 meV for wy = 51.32 meV.

In summary, we have presented a theory of coupled
system of interacting electrons and a single Mn ion in II-
VI parabolic quantum dots (QDs). Tuning the number of
electrons leads to the variation of total spin of electrons and
their exchange coupling with the Mn ion. The exchange
coupling can be engineered by the choice of the electronic
shell and Mn ion position. It can be switched off for closed
electronic shells and maximized for partially filled shells.
Unlike the total spin which is maximized for half-filled
shells, the exchange interaction does not depend on shell
filling. We show how this unexpected effect leads to a
characteristic addition and excitation spectrum. There-
fore, we demonstrate that the exchange interaction of Mn
ions with controlled electronic environment can be engi-
neered in a quantum dot by optimizing quantum confine-
ment, precise control of electron number, and proper
choice of Mn position.
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