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It has been known since the early days of plasma physics research that superthermal electrons are
generated during beam-plasma laboratory experiments. Superthermal electrons (the � distribution) are
also ubiquitously observed in space. To explain such a feature, various particle acceleration mechanisms
have been proposed. However, self-consistent acceleration of electrons in the context of plasma kinetic
theory has not been demonstrated to date. This Letter reports such a demonstration. It is shown that the
collisionality, defined via the ‘‘plasma parameter’’ g � 1=n̂�3

D, plays a pivotal role. It is found that a small
but moderately finite value of g is necessary for the superthermal tail to be generated, implying that purely
collisionless (g � 0) Vlasov theory cannot produce a superthermal population.
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Since the early days of plasma physics research, it was
known from laboratory experiments [1] that a small popu-
lation of electrons which possess much higher energy than
the original beam kinetic energy is generated. In space,
energetic particles are ubiquitously observed [2,3], which
is often modeled by the � distribution [2,4]. It is widely
believed that their origin lies in the acceleration by wave
turbulence, i.e., second-order Fermi acceleration. Various
authors have addressed this problem, but invariably the
discussion is either qualitative or based upon non-self-
consistent approaches. Early qualitative theories are best
represented by Ref. [5]. Among the later works, Hasegawa
et al. [6] obtained the analytical � solution in the presence
of a high-intensity radiation field. Ma and Summers [7]
replied upon stationary Whistler turbulence. Numerical
solutions of the particle diffusion equation in Refs. [8,9],
with model diffusion coefficients are also similar in this
regard. The combined approach of the strong-turbulence
(i.e., Zhakarov) equation for the waves and the weak-
turbulence diffusion equation for the particles [10] were
also suggested. Collier [11], on the other hand, employed
the Lévy flight probability concept to derive a �
distribution.

As briefly surveyed above, a variety of physical pro-
cesses may lead to �-like distributions. However, conspic-
uously lacking is a concrete demonstration of a self-
consistent generation of superthermal particles within the
context of plasma kinetic theory. The reason seems to be
that the particle diffusion equation is relatively easy to
handle, provided the diffusion coefficient is simply mod-
eled. However, if one is to solve the wave intensity from
the nonlinear wave kinetic equation instead of modeling it,
then the matter becomes notoriously difficult. At present,
no one has managed to derive the nonlinear wave kinetic
equation in full generality from first principles, let alone to
solve it. The only available theory pertains to the
Langmuir/ion-sound turbulence problem in unmagnetized
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plasmas [12]. In this Letter we demonstrate, for the first
time to our knowledge, the self-consistent generation of
superthermal electrons within the context of plasma kinetic
theory. We restrict ourselves to the temporal beam-plasma
relaxation and Langmuir/ion-sound turbulence problem.
Strictly speaking, the laboratory generation of energetic
electrons is more relevant to the spatial beam relaxation
problem [13], but the two are related to each other.

In the present weak-turbulence theory, the ‘‘plasma
parameter’’ g � 1=n̂�3

D [where �D � �Te=4�n̂e2�1=2 is
the Debye length, n̂ is the density, Te is the electron
temperature, and e is the unit charge] turns out to play a
pivotal role. It is found that a small but moderately finite
value of g is necessary for the superthermal tail to be
generated, implying that purely collisionless (g � 0)
Vlasov theory cannot produce superthermal population.
Particle-in-cell simulation [14] deals with pseudoparticles
averaged over the cell, rather than true individual particles.
The present weak-turbulence simulation has its limitations,
but it describes individual particle effects in a most faithful
manner. Thus, such a theory occupies a unique place
among the arsenal of plasma physics research tools. We
start from the electron particle kinetic equation,
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where � � k�D, M � mi=me, and � � Ti=Te. Here,
mi is the ion (proton) mass, Ti is the ion temperature,
and !pe � �4�n̂e2=me�

1=2 is the plasma frequency. The
spectral intensities for Langmuir and ion-sound waves, I��k
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(� � L; S), are defined via h�E2i�!;k �
P
���1I

��
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k�, where �E represents the fluctuating electric field.

For a collisional plasma in which collective modes are
dominant, the appropriate equation for the particles is
Eq. (1). The Balescu-Lénard equation is valid only when
the system is close to thermal equilibrium [15].

The wave kinetic equation for mode � (�L; S) is given
in terms of the normalized wave intensity N��
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where 
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hand side of Eq. (3) represent spontaneous (P�k) and in-
duced (	�k) emission processes, where PLk � PkFe, PSk �
�S
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ward/backward propagation (with respect to the beam
propagation direction). The decay processes are depicted
by V�k;k0 ,
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where Vk � ��=2��e2=T2
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k=�k� k0�2. The quantities
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1=2�1� 3Ti=Te�1=2. Finally, the last term

in Eq. (3) depicts spontaneous and induced scattering
processes, where
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where � � �k� ��0k0�=jk� k0j.
In what follows, we take a one-dimensional (1D) reduc-
tion. The initial electron distribution function is given by,
Fe�v;0� � �1� n̂b=n̂���ve��1e�v

2=v2
e � �n̂b=n̂���vb��1


e��v�V0�
2=v2

b . The ions are treated as a stationary back-
ground with Fi � ��vi��1e�v

2=v2
i . The ion thermal speed

is defined by vi � �2Ti=mi�
1=2. The dimensionless input

parameters are n̂b=n̂, V0=ve, vb=ve, �; and g � 1=n̂�3
D.

Here ve � �2Te=me�
1=2 and vb � �2Tb=me�

1=2 are the bulk
electron and beam thermal speeds, respectively. We choose
n̂b=n̂ � 10�2, V0=ve � 4, vb=ve � 1, 1=� � 7, and vary
g. For interplanetary space, g � 5
 10�3, while for glow
discharge experiment, g � 
10�2. In the chromosphere,
g � 5
 10�4, and for thermonuclear devices, g can be as
low as�10�8. Of course, the mass ratio isM � 1836. The
ranges of normalized velocity and wave number are
�16< u � v=ve < 16 and 10�4 < q � kve=!pe < 1, re-
spectively. We choose 201 grids for u and 101 grids for q.
In plotting the results for backward waves (� � �1), we
invoke the symmetry property and display the intensities in
the negative range �1< q<�10�4. The numerical
scheme is the standard leapfrog explicit method with
time increment �t � 0:01!�1

pe .
Numerical solutions of 1D equations have been at-

tempted in the past. However, they are incomplete in that
not all the terms on the right-hand side of Eq. (3) were
included. Reference [16] is the first to partially solve the
weak-turbulence equation, but it did not include decay
terms, and the S wave equation was not solved at all.
Later, Refs. [17,18] solved more complete equations, but
again, they ignored spontaneous fluctuations and neglected
the Smode scattering term. By the same token, Ref. [19] is
only partially complete in that scattering terms were com-
pletely ignored altogether. Finally, our recent work [15]
also suffers from the similar shortcoming in that we failed
to include the S mode scattering term. Needless to say, one
must include all the terms in order to properly characterize
the nonlinear dynamics of the system. We found that fail-
ure to do so prevents the generation of the superthermal
tail. To demonstrate this, we show in Fig. 1, the normalized
L and S mode spectral intensities, I�q � �2��2gI�k =�mev

2
e�

in log-scale vs q. The top panels correspond to the full
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FIG. 1 (color). Evolution of the Langmuir (left) and ion-sound
(right) mode spectral wave energy density for g � 5
 10�3, up
to !pet � 104. Panels (a) and (b) are full solutions; (c) and (d)
are when only decay terms are retained for nonlinear interac-
tions; (e) and (f) correspond to when all the spontaneous
processes are ignored.
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FIG. 2 (color). Electron distribution (a) when all the terms in
Eq. (3) are included, (b) when only the decay terms are retained,
and (c) when spontaneous processes are ignored.
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FIG. 3. Electron distribution at !pet � 2
 104 versus u for a
range of g. Significant tail formation takes place only for a
sufficiently high value of g.
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solution. In the middle and bottom panels, we present
results of two common approximations. The middle panels
correspond to the approximation where induced and spon-
taneous scattering terms are arbitrarily ignored [i.e., (c) and
(d)] [19]. The bottom panel is when all the spontaneous
effects are ignored [(e),(f )] [17]. Note that incomplete
theories are quite adequate if the purpose is an approximate
description of the wave dynamics.

However, the generation of a superthermal tail critically
depends on inclusion of all the terms. Particularly, we find
that spontaneous scattering terms play crucial roles, as they
are responsible for the generation of turbulence spectra in
the gap region between the primary and backscattered L,
and the condensate modes. Our recent work [15] only
includes the spontaneous scattering term for the L mode.
We find that the same term due to the S mode contributes
equally, such that ignoring S mode scattering leads to a
sizable discrepancy. Shown in Fig. 2 is the normalized
electron distributions F�u� vs u for three cases considered
in Fig. 1. Figure 2 shows that approximate theories fail to
produce the superthermal tail population. Figures 1 and 2
were generated for g � 5
 10�3 and for normalized time
up to !pet � 104. However, for low values of g, we find
that the tail production is suppressed such that in the limit
g! 0, the tail is almost completely absent even if we
include all the terms in Eq. (3). To show this, we display
in Fig. 3 F�u� for g ranging from g � 10�6 to g � 5

10�3, computed at maximum time !pet � 2
 104. For
the low collisionality regime, no tail formation can be seen.
However, when g approaches g � 5
 10�3, a significant
heating of the electrons can be seen.
21500
Space observation of energetic electron distributions are
often modeled by the � distribution; the 1D version of
which is given in normalized form by

F��u� �
���� 1�

����1=2���� 1=2�

1

�1� u2=����1 : (7)

Figure 4 plots F�u� at !pet � 2
 104, for g � 5
 10�3,
vs u. Superposed are � distribution ([4]) with index � �
3:5 and the Gaussian model (�! 1). Observe the rather
excellent fit of the real solution with � distribution.

The discussion thus far is pertinent to the particle accel-
eration in an unbounded uniform plasma. In highly inho-
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mogeneous plasmas, superthermal particles can be readily
generated in a variety of situations. For instance, particle
acceleration is shown to occur at collisionless shocks
[20,21], via parametric instability driven by a large-
amplitude ion-acoustic-like wave [22], and during the
magnetic reconnection process [23], to mention just a
few. Our analysis is not directly applicable for these
situations.

Finally, we note that an alternative approach to under-
standing the superthermal � distribution has been put forth
recently. The novel idea does not involve turbulent accel-
eration at all, but instead relies on an alternative thermo-
dynamical concept called the ‘‘nonextensive’’ entropy
[24–26]. In this approach, �-like distributions are natural
thermodynamic equilibrium solutions, in contrast to the
Maxwell-Boltzmann distribution in the case of the custom-
ary, or ‘‘extensive,’’ statistics. The present Letter takes a
more traditional view regarding the issue of superthermal
distribution. That is, we have implicitly confined ourselves
to the conventional Boltzmann-Gibbs statistics, upon
which the present day plasma physics is largely based.
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