
PRL 95, 213902 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
18 NOVEMBER 2005
Interaction of an Optical Soliton with a Dispersive Wave
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Scattering of a dispersive wave by optical solitons is studied experimentally in photonic crystal fibers in
cases when the soliton and the dispersive wave have either identical or orthogonal polarization states.
Observations of new resonant frequencies are reported. The experimental results are compared to
numerical simulations and predictions from the recently derived wave vector matching conditions.
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Sufficiently strong excitation of a nonlinear system often
naturally evolves into a mixture of nondispersive localized
wave packets, called solitary waves or simply solitons,
embedded into a sea of small-amplitude dispersive waves.
Thus, the interaction between solitons and coexisting dis-
persive waves is one of the long-standing problems in
nonlinear wave dynamics [1]. An obvious example is that
of water-wave solitons traveling through small-amplitude
ripples [2]. Another example directly relevant in the con-
text of this work comes from fiber optics. Namely, an
intense ultrashort optical pulse propagating in an optical
fiber can break up into a sequence of solitons immersed
into linear dispersive waves also generated during this pro-
cess; see, e.g., [3–7] for recent observations of this effect.
The pulse breakup and subsequent nonlinear interaction of
the emergent waveforms lead to a significant spectral
broadening or to supercontinuum generation [3–7].

To understand the details of the supercontinuum gen-
eration in optical fibers, it is natural to consider separately
the radiation of dispersive waves by individual solitons
(see, e.g., [3,8,9]) and scattering of dispersive waves by
solitons [10]. It has been predicted that scattering of linear
waves from optical fiber solitons in the presence of signifi-
cant higher-order dispersion leads to the generation of
new spectral components [10]. The phase matching con-
ditions that describe this process are qualitatively distinct
from those applicable to the four-wave mixing (FWM) of
dispersive waves only, i.e., without solitons [11]. Some
features of the recent experiments on supercontinuum
generation [5,6] in photonic crystal fibers (PCFs) pumped
with short pulses can be interpreted using the theory of
Ref. [10].

The scattering of linear dispersive waves from spatially
localized soliton structures has also been considered in the
context of Bose-Einstein condensates [12] and in modu-
lated planar optical waveguides [13]. The focus of these
two papers, however, has been on the calculation of reflec-
tion and transmission properties of the potential created by
the soliton, and the possibility of generating new spectral
components has not been considered. There has also been a
05=95(21)=213902(4)$23.00 21390
series of earlier papers [14] analyzing the interaction of
solitons with dispersive waves in the integrable idealiza-
tion of the nonlinear Schrödinger (NLS) model, where no
harmonic generation from this process is possible due to
the robustness of the single soliton solutions within the
ideal NLS equation.

The main purpose of this work is to present the results of
experiments which directly test the interaction of fiber soli-
tons with a continuous wave (CW). Both the solitons and
the CW were launched into the fiber separately and in a
controlled manner. This setup allowed us independent con-
trol of the powers and the central wavelengths of the inter-
acting waves, as well as their polarizations.

Fiber appropriate for our purposes ideally should have a
sufficiently high nonlinear coefficient and a large group ve-
locity dispersion slope. The former is important to observe
nonlinear interactions using available laser sources, and the
latter is required to have a system which is far from the
integrable limit, where frequency conversion with solitons
is forbidden [14]. A small-core photonic crystal fiber sat-
isfies both of the above requirements. The PCF used in this
work is the same as the one used in Ref. [6]. In this PCF,
there are two wavelengths (�1 � 680 nm, �2 � 1510 nm),
where the group velocity dispersion (GVD) is zero. For
�1 < �< �2, the GVD is anomalous and it is normal
otherwise. Working in the proximity of �2 gives access
to the much steeper GVD slope. The fiber core size (of the
order of the wavelength) provides a large value for the
nonlinear coefficient � ’ 0:1 �Wm��1 [6,11]. The length
of the fiber used in our experiments is 90 cm. The source
for the solitons in the fiber is a synchronously pumped
optical parametric oscillator, which generates a train of
100 fs pulses at 80 MHz repetition rate and central wave-
length of 1425 nm. The CW field at 1546 nm is generated
by a temperature-controlled laser diode and amplified with
an erbium-doped fiber amplifier. The CW signal is thus
located in the normal dispersion region, and the power
coupled to the fiber is estimated at 0.1 W.

For the numerical model, we use the generalized vector
NLS equations [7]:
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FIG. 1 (color online). Interaction between the soliton and CW
having the same polarizations. First row (a),(d),(g) numerical
modeling, and second row (b),(e),(h) experimental measure-
ments, showing XFROG diagrams resulting from the interaction
between the soliton and CW. Third row (c),(f ),(i) shows experi-
mental measurements with the CW field switched off. 1st, 2nd,
and 3rd columns correspond to the soliton peak power 1.7, 4.4,
and 7 kW, respectively. Propagation length is 90 cm and CW
power is 0.1 W for all the panels. Panel (j) shows the graphical
solution to the wave vector matching condition (2) for the two
values of the soliton wavelength �s. The shaded gray area shows
the FWM band, and the dashed area shows the Cherenkov band.
The dashed vertical line marks the zero GVD wavelength. The
color scale used in spectrograms is logarithmic.
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are the group velocity ���1�x;y, group velocity dispersion
���2�x;y, and third-order dispersion ���3�x;y. The higher-order
dispersion terms up to 7th order have also been included in
our modeling to match the experimentally measured dis-
persion profile of the fiber. The measured group delay
between the two eigenpolarizations of the PCF is j��1�x �
��1�y j ’ 1:4 ps=m at 1425 nm. The differences between the
second- and higher-order dispersions for two eigenpolari-
zations could not be resolved experimentally: ��2�x;y ’
�72 ps2=km and ��3�x;y ’ �0:65 ps3=km at 1425 nm. The
difference between the refractive indices of the two prin-
cipal polarization axes has been estimated at 7� 10�4 by
numerical modeling. This corresponds to a beat length ’
2 mm, which is much less than the dispersion length of
14 cm at 1425 nm and the walkoff length of 7 cm due to the
difference in the group velocities. Therefore, the influence
of the terms proportional to A�x;yA2

y;x on the field dynamics
is negligible [11], and they have not been included into
Eqs. (1). The function R�t� entering the integral in Eq. (1) is
the standard Raman response [11].

First we describe experimental results for the case when
the soliton and CW pump have the same polarizations (see
Ref. [10] for the corresponding theory). To analyze the
output signal, we use cross-correlation frequency resolved
optical gating (XFROG) spectrograms, simultaneously
showing spectral and temporal content of the signal [4–
6,15]. Our experimental and numerical results are shown in
Fig. 1. The peak pump power is 1.7, 4.4, and 7 kW for the
1st, 2nd, and 3rd columns in Fig. 1, respectively. The
bottom row in Fig. 1 shows experimental XFROGs for
the case when no CW pump has been launched into the
fiber. From the two top rows, one can see that as the soliton
power increases its interaction with the CW radiation
becomes more and more pronounced. There are two rea-
sons for this. The first is that, in all the cases considered in
this work, the FWM term responsible for the interaction
between the soliton and CW pump is proportional to the
modulus squared of the soliton field and only to the first
power of the (unconjugated) CW field [10]. Second, and
more important, is that, with the increase of the pump
power, the soliton becomes narrower in the time domain,
and, therefore, the Raman effect brings the soliton carrier
frequency closer to the CW frequency, which strongly
enhances the efficiency of the FWM process [10].
Comparison of theoretical and experimental results unam-
biguously indicates that the frequency component to the
longer wavelength side of the CW line in Figs. 1(d) and
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1(e) is generated as a result of the FWM between the
soliton and the CW pump. When the CW pump is switched
off [Fig. 1(f)], the FWM signal disappears. Another im-
portant observation which we make from this part of our
work is the appearance of the hole in the CW pump; see
Figs. 1(e) and 1(h). This hole is formed because the energy
taken from the CW pump is transferred (scattered) by the
soliton to the new spectral component.

The wave vector matching condition for the FWM pro-
cess between the soliton and the CW relevant to our experi-
ments is [10]

ks=signal � �cw � ks=cw � �signal; (2)

where �cw and �signal are the propagation constants of the
fiber mode taken for the frequency of the CW pump and for
the frequency of the generated signal. ks=signal and ks=cw are
the wave vectors of the Fourier harmonics of the soliton at
the signal frequency and at the CW frequency, respectively.
This condition predicts the frequency of the newly gener-
ated peak very well. Conveniently normalized and rescaled
geometrical representation of the wave vector matching (2)
is shown in Fig. 1(j), where the nearly straight lines
represent the left-hand side of Eq. (2) for the two different
values of the soliton wavelength, and the curved line is the
right-hand side of Eq. (2). Since the soliton wavelength is
being shifted by the Raman effect, the matching point of
the FWM process also shifts with both propagation dis-
tance and pump power. The shaded region in Fig. 1(j) and
the white lines in Fig. 1(d) show the boundaries of the
FWM band. Efficiency of excitation of the other FWM
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resonances located on the left from the shaded region is
low, and they are not observed in the experiment.

When we attempted to increase the pump power further
and make the FWM peak brighter, we encountered a prob-
lem. For higher pump powers, the soliton shifts further to-
wards the point where its frequency is stabilized (approxi-
mately at 1480 nm) due to spectral recoil [8]. The fre-
quency stabilization process is accompanied by strong
emission of Cherenkov radiation, which is matched for
ks=signal � �signal and spreads over the spectral range,
where, for smaller powers, we observed the FWM signal
[see the overlap between the dashed and shaded regions in
Fig. 1(j)]. Comparison of Figs. 1(g)–1(i) clearly shows that
this strong radiation is indeed the Cherenkov one, because
its emission occurs independently of the CW pump. Thus,
in the case when the soliton and CW pump have the same
polarizations, observation of the newly generated wave can
be achieved only for a relatively small power range of the
soliton pump.

Equation (2) can be equally applied to the case when the
soliton and CW are orthogonally polarized and launched in
the corresponding eigenaxis of the fiber. The polarization
of the FWM signal coincides with the CW polarization,
while Cherenkov radiation always has the same polariza-
tion as the soliton. Thus, performing measurements with
orthogonally polarized soliton and CW, one can hope not
only to uncover the new features of the FWM process but
also to separate the FWM signal from the Cherenkov
radiation. In the remaining part of the work, we describe
our measurements carried out with orthogonally polarized
solitons and CW radiation.

XFROG spectrograms measured in the polarization cor-
responding to the soliton part of the field are very similar to
FIG. 2 (color online). Interaction between the orthogonally polar
group velocity at the CW frequency. (a) The graphical solution to t
soliton wavelength �s. The grey shaded region marks the FWM ba
(d) Experimentally measured XFROG in the CW polarization at t
(b),(c),(e),(f ) Numerically computed XFROGs. (b),(c) and (e),(f ) co
(b),(e) correspond to the case when zero fraction of the soliton pump
when 0:3% of the soliton pump power couples to the CW polarizat
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those presented in Figs. 1(c), 1(f), and 1(i). The orthogo-
nally polarized field containing the CW pump, however,
develops different spectral and temporal features; see
Figs. 2 and 3. It is important, for the subsequent discussion,
that throughout the relevant frequency interval the group
velocity at one polarization, let us say x, is larger than the
group velocity of the y-polarized light.

Figure 2 corresponds to the situation when the soliton
group velocity is larger than the group velocity at the CW
frequency. The measurements shown in Fig. 2(d) are re-
produced by the two different numerical results shown in
Figs. 2(e) and 2(f). In Fig. 2(e) none of the solitons couple
to the CW polarization, while in Fig. 2(f) 0:3% of the input
power of the short pulsed pump is coupled into the second
polarization to model experimental imperfections in
launching the light into the fiber. The radiation pattern on
the left of the CW pump seen in Fig. 2(d) is explained by
this imperfection. The soliton frequency changes linearly
with propagation distance due to the Raman effect, and the
FWM signal is continuously generated in the course of the
propagation. This implies that the frequency of the FWM
resonance visible in the XFROGs also must vary linearly
with delay; see Figs. 2(d)–2(f). Using Eq. (2), we predict
generation of the FWM signal in the shaded interval shown
in the wave vector matching diagram in Fig. 2(a) [see also
the white lines in Fig. 2(e)].

Radiation emitted due to parasitic coupling of the soliton
to the CW polarization forms its own continuum. This con-
tinuum is emitted at the very beginning of the fiber [see
Fig. 2(c)], and, with further propagation, its spectral com-
ponents propagate with their own group velocities, which
results in the parabolic shape of the corresponding signal in
the XFROG spectrogram; see Figs. 2(c) and 2(f). The
ized soliton and CW. Soliton group velocity is greater than the
he wave vector matching condition (2) for the two values of the
nd. The dashed vertical line marks the zero GVD wavelength.

he end of the 90 cm fiber and the soliton peak power 10 kW.
rrespond to the 45 and 90 cm propagation length, respectively.

couples to the CW polarization, and (c),(f ) correspond to the case
ion. The color scale used in spectrograms is logarithmic.
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FIG. 3 (color online). Interaction be-
tween the orthogonally polarized soliton
and CW, but soliton and CW polariza-
tions are interchanged relative to Fig. 2,
i.e., soliton group velocity is less than the
group velocity at the CW frequency.
(a) shows that the wave vector matching
condition (2) does not produce FWM
band as in the case in Fig. 2(a). The
dashed vertical line marks the zero
GVD wavelength. XFROG diagrams in
(b)–(f) are measured and calculated for
the same parameters as in Fig. 2. The
color scale used in spectrograms is loga-
rithmic.
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parabola shown in Figs. 2(c) and 2(f) is calculated
as � � �@�cw=@!�z. Comparing Figs. 2(b) and 2(c) with
Figs. 2(e) and 2(f), one can see that the depletion area
inside the CW and the length of the FWM signal are
increasing with propagation. This and detailed analysis
of XFROG images taken for multiple values of z indicate
that in this case there is a continuous energy transfer from
the CW into the resonant radiation along the entire fiber
length.

If we swap polarizations of the soliton and CW, then the
scattering process generates a different set of XFROG
traces, as shown in Fig. 3. In this case, the soliton group
velocity is smaller than the CW-group velocity, and Eq. (2)
predicts no FWM resonances for the relevant soliton fre-
quencies; see the wave vector matching diagram in
Fig. 3(a). The parabolic radiation pattern observed in the
experiment is well reproduced if we couple 0:3% of the
short pulsed pump into the CW polarization. However, in
this case a weaker continuum is generated even if no
soliton pump is coupled to the CW polarization; see
Fig. 3(e). Note that, in this case, the CW depletion area
hardly changes with z; see Figs. 3(b), 3(c), 3(e), and 3(f).
This indicates that the energy is transferred from the CW
field into the continuum only at the beginning of the fiber,
and, after this, no further continuum is generated, but it
simply disperses.

In summary, we have carried out an experimental inves-
tigation of the interaction of an optical fiber soliton with a
dispersive wave. We have observed generation of new
frequencies resulting from this process, which confirmed
recent theoretical predictions of the differences distin-
guishing the FWM of the dispersive waves with nondis-
persive soliton pulses from the FWM of all-dispersive
waves [10]. We have also demonstrated that, when the
21390
FWM process is not phase matched, interaction of the
orthogonally polarized CW and soliton results in the con-
tinuum generation in the CW polarization.
2-4
[1] V. E. Zakharov et al., Physica (Amsterdam) 152D, 573
(2001).

[2] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and
Chaos (Cambridge University Press, Cambridge, England,
1990).

[3] J. Herrmann et al., Phys. Rev. Lett. 88, 173901 (2002).
[4] J. M. Dudley et al., Opt. Express 10, 1215 (2002).
[5] T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, J. Opt.

Soc. Am. B 21, 1969 (2004); G. Genty, M. Lehtonen, and
H. Ludvigsen, Opt. Express 12, 4614 (2004).

[6] A. Efimov et al., Opt. Express 12, 6498 (2004).
[7] F. Lu et al., Phys. Rev. Lett. 93, 183901 (2004).
[8] D. V. Skryabin et al., Science 301, 1705 (2003);

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys.
Rev. E 70, 016615 (2004).

[9] P. K. A. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A 41,
426 (1990); J. N. Elgin, Phys. Rev. A 47, 4331 (1993); V. I.
Karpman, Phys. Rev. E 47, 2073 (1993).

[10] A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, Opt. Lett.
29, 2411 (2004); D. V. Skryabin and A. V. Yulin, Phys.
Rev. E 72, 016619 (2005).

[11] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San
Diego, CA, 2001).

[12] P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov,
Phys. Rev. A 60, 3220 (1999).

[13] S. Flach et al., Phys. Rev. Lett. 95, 023901 (2005).
[14] N. Akhmediev and S. Wabnitz, J. Opt. Soc. Am. B 9,

236 (1992); E. A. Kuznetsov, A. V. Mikhailov, and I. A.
Shimokhin, Physica (Amsterdam) 87D, 201 (1995).

[15] A. Efimov and A. J. Taylor, Appl. Opt. 44, 4408 (2005).


