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A recent theoretical analysis [A. Blais et al., Phys. Rev. A 69, 062320 (2004)] and experimental results
[A. Wallraff et al., Nature (London) 431, 162 (2004)] show that interesting transport properties of a single
microwave photon emerge when a quantum bit in a cavity is coupled to a one-dimensional waveguide.
Here we adopt a real-space model Hamiltonian to give a unified approach which accounts for the
experimental results, and make new predictions on the properties of single photon transport, such as the
general Fano line shape, symmetric vacuum Rabi splitting for a leaky cavity at resonance, and a one-
photon switching capability.
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FIG. 1 (color online). Schematics of the systems. (a) A Cooper
pair box is embedded in a cavity coupled to a one-dimensional
transmission line waveguide. The three horizontal bars indicate
the waveguide. The cavity is formed by two capacitive open gaps
in the center line. (b) Without cavity.
The studies of interactions of electromagnetic fields with
two-level systems is of fundamental importance. One goal
of these studies is to achieve the limit where a single two-
level system couples strongly to a single photon to ex-
hibit coherent behavior, which has been a main theme
of quantum optics of the past two decades and has gen-
erated the field of cavity quantum electrodynamics (cavity
QED) [1,2]. In a recent theoretical proposal [3] and an
experimental report [4], the strong coupling is achieved by
embedding a Cooper pair box in a resonator capacitively
coupled to a one-dimensional microwave transmission line
waveguide (coplanar waveguide), as shown in Fig. 1(a). In
a transmission line waveguide, the photon state forms a
one-dimensional continuum, and accordingly, the experi-
mental setup in Ref. [4] probes the couplings between the
Cooper pair box, the resonator, and the one-dimensional
waveguide modes.

In this Letter, we point out some of the important con-
sequences resulting from coupling to the one-dimensional
continuum. The spontaneous emission of the excited two-
level system, as well as the mode leakage of the cavity, i.e.,
the interactions of the system with the external environ-
ment is generally treated as a loss and decoherence mecha-
nism and is included as part of the absorption coefficient or
decay rate of the system [5]. Contrary to this, it has been
shown recently that when the two-level systems, with or
without a cavity (resonator), are coupled with a one-
dimensional continuum, the spontaneous emission from
two-level systems and the leaked waves out of the cavity,
can coherently interfere with the propagating modes in the
one-dimensional continuum, and results in interesting
transport properties [6]. Here, we adopt this method to
give a unified and fully quantum mechanical approach to
model the recent Cooper pair box experiment, and make
predictions about the transport properties of the photons
which can be verified by further experiments.

The Cooper pair box, a mesoscopic superconducting
island connected to a large reservoir via Josephson junc-
tion, can form a quantum bit (qubit) with two states in the
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charge regime with suitable gate voltage [7–9]. In this
regime, the Hamiltonian describing the Cooper pair box is

H �
X
n

4EC�n� ng�2jnihnj

�
1

2
EJ�jnihn� 1j � jn� 1ihnj�; (1)

where EC is the charging energy, EJ is the Josephson
coupling energy, n is the excess Cooper pair number on
the island, and ng is the tunable dimensionless gate charge
[3,10]. The two eigenstates of the qubit, denoted by j�i
and j�i, are obtained by diagonalizing Eq. (1) for n � 0
and 1. The Cooper pair box has advantages of long coher-
ence time [7,8] and large effective electric dipole moment
[3], which makes it especially well suited to reach the
strong coupling limit in cavity QED. If two parallel
Josephson junctions are used to connect the Cooper pair
box to form a SQUID loop, the Josephson coupling energy,
EJ � Emax

J j cos���=�0�j, can be controlled by threading
the loop with a magnetic flux � (where �0 � h=2e is the
flux quantum). The transition energy � between the two

eigenstates is � �
���������������������������������������������
E2
J � 16E2

C�1� 2ng�
2

q
. � is equal to

EJ when ng � 1=2, i.e., at the degeneracy point [8].
The interaction between the Cooper pair box (qubit), and

the propagating multimode photons is described by the
Dicke Hamiltonian [11]:
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where the first term describes the two eigenstates j�i and
j�i of an isolated Cooper pair box, � is the transition
energy; the second term represents the energy of the prop-
agating photons, !k is the frequency (i.e., dispersion rela-
tion) of the photon with wave vector (i.e., mode index) k,
and ayk �ak� is the bosonic creation (annihilation) operator
of the photon; the third term describes the interaction;
Vk � �2�@=!k�

1=2�D � ek is the coupling between the
photons and the qubits. D is the dipole moment of the
Cooper pair box, ek is the polarization unit vector of the
photon. �� � aye ag and �� � aygae are the usual ladder
operators that change the state of the qubit and satisfy
��j�i � j�i and ��j�i � 0. ayg �a

y
e � is the fermionic

creation operator of the j�i�j�i� state of the qubit.
In one dimension, when the resonance energy of the

two-level system is away from the cutoff frequency of
the dispersion relation, we rewrite the Hamiltonian of the
system in real space as
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where vg is the group velocity of the photons, and
cyR�x��c

y
L�x��� is a bosonic operator creating a right-going

(left-going) photon at x. Ee � Eg�� �� is the transition
energy. In deriving Eq. (3), we assume the dispersion
relations are nondegenerate, linearize the dispersion rela-
tion of the photons in the waveguide, and replace Vk by a
constant V. This Hamiltonian is similar to the Anderson
s� d model in condensed matter physics, which describes
the S-wave scattering of electrons off a magnetic impurity
in three dimensions [12,13]. A similar one-mode
Hamiltonian has also been investigated [14].

We first highlight the physics of the coherent interfer-
ence in the waveguide geometry. Consider two-level sys-
tems coupled to a one-dimensional continuum [Fig. 1(b)].
In this case, the excited two-level system will decay ex-
ponentially. However, in the reduced dimensionality, when
a single photon is incident upon the two-level system with
a frequency on resonance, the wave function of the sponta-
neously emitted photon inevitably interferes coherently
with that of the incident wave, due to the forward and
backward directions being the only directions in phase
space. Such interference can result in the photon being
completely reflected with no loss. This occurs in spite of
the fact that the physical dimension of the two-level system
is typically far smaller than the wavelength of light. Thus
spontaneous emission can be exploited to influence the
coherent transport properties of a single photon.
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In one-dimensional scattering, for a single photon, the
most general line shapes of the transmission and reflection
spectra are of the Fano type [15]. The Fano line shape is
asymmetric and is completely specified by two phase
shifts passing through the scatterer and the environment.
These two phase shifts correspond to the direct and the
resonance-assisted indirect pathways, respectively [16],
and the interference between these two phase shifts results
in the Fano line shape of the transmission spectrum [15].
When the scattering potential possesses parity symmetry,
the transmission amplitude is given by t � 1=2�e2i�0�E� �

e2i�1�E��, where �0�E� and �1�E� are the phase shift of the
even and odd wave, respectively, and E is the energy of the
photon. The transmission coefficient is given by T �
jtj2 � cos2��0 � �1�.

For the short-ranged potential, kU� 1 (k is the mo-
mentum of the photon, and U denotes the range of the
potential, which is roughly the size of the two-level sys-
tem), �1 � 0 by symmetry. In general, there are two con-
tributions to �0�E�: one from the scatterer, and one from
the background, and only the background contributes to
�1�E�. �0 takes the form �0�E� � �res�E� � �bg;0�E�, and
�1�E� � �bg;1�E�. �res�E� � arctan	�=2=�E���
, where
� again is the resonant energy of the scatterer, and �=2 is
the decay rate. The background phase shifts, �bg;0�E� and
�bg;1�E�, come from the environments where the two-level
system is located, such as the embedding material, or the
partially transmitting elements forming the cavity within
the one-dimensional waveguide. This phase shift provides
tunability of the transmission line shape. In the special case
when �bg � �bg;0�E� � �bg;1�E� is 0, which corresponds
to the cases shown in Fig. 1(b), the transmission profile is
(anti-) Lorentzian, and has a dip down to 0 at resonance
energy �. The transmission line shape can be completely
inverted when �bg is close to�=2, and exhibits asymmetric
features when �bg takes values between 0 and �=2
[Fig. 1(a)].

Consider the optical system consisting of a two-level
system embedded in a one-dimensional waveguide, as
shown in Fig. 1(b). Assume a photon is coming from the
left with energy Ek � vgk. The stationary state of the
system is

jEki �
Z
dxf��k;R�x�c

y
R�x� ��

�
k;L�x�c

y
L�x�gj0;�i

� eka
y
e agj0;�i; (4)

where j0;�i is the vacuum state with zero photon and the
two-level system is unexcited, and ek is the probability
amplitude of the two-level system in the excited state.
Equation (4) represents a complete basis for the system.
For a photon incident from the left, ��k;R�x� and ��k;L�x�
take the form

��k;R�x� � �e
ikx���x� � teikx��x��;

��k;L�x� � re�ikx���x�;
(5)
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FIG. 3. The transmission spectra through the total system cor-
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where t; r are the transmission and reflection amplitude,
respectively.

From the eigenvalue equation HjEki � EkjEki, together
with the commutation relations, we obtain t � cosbeib,
r � i sinbeib, ek � ��vg=V��sinbeib�, where the phase
shift is b � arctan	V2=�vg��� Ek��
.

The reflection coefficient is given by

R � jrj2 � sin2

�
arctan

�
V2

vg��� Ek�

��

�
�V2=vg�2

��� Ek�
2 � �V2=vg�

2 ; (6)

which shows a Lorentzian line shape.
From t and r it follows that the transfer matrix for one

two-level system has the following form:

�
a0

b0
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� iV2

vg���Ek�
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0
@

1
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b

�
: (7)

The transfer matrix relates the incoming and outgoing
wave amplitudes a�b0� and b�a0� on both sides of the
two-level system. Note the form of the transfer matrix is
the same as when the waveguide is side coupled to a single-
mode cavity [17–19].

Figure 2 shows a typical transmission and reflection
spectrum. The line shape is a universal function of �Ek �
��=�V2=vg�, and, consequently, the width is proportional
to V2=vg. At resonance, the photon is completely reflected
and the single two-level system behaves as a mirror. The
notable feature of this result is that the spontaneous emis-
sion directly gives rise to the reflection, rather than losses
that degrade the performance.

A more general Fano line shape can be created if there
are partial reflections in the waveguide such that the photon
modes are no longer purely forward or backward propagat-
ing. As an example, consider a case where the two-level
system is surrounded by a pair of capacitive open gaps
[Fig. 1(a)]. The presence of the partially reflecting ele-
ments introduces a background phase shift, in addition to
the phase shift experienced by the photon due to the two-
level system. The response function of the system can be
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FIG. 2. The transmission spectrum (dashed line) and the re-
flection spectrum (solid line) for a two-level system in a one-
dimensional waveguide as shown in Fig. 1(b).
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calculated by combining the transfer matrix of each indi-
vidual element in the system. The general form of the
transfer matrix for any partially reflecting elements with
time reversal symmetry is described by [20]

Tg �
1=�t� ��r�=�t�

��r=�t 1=�t

� �
; (13)

where �t and �r, satisfying j�tj2 � j �rj2 � 1, are the amplitudes
of transmittance and reflectivity, respectively. The gaps act
as potential barriers for the single photon, and are modeled
by [21] �r � r12�1� X2�=�1� r2

12X
2�, where r12 � �Z2 �

Z1�=�Z2 � Z1� is the reflection amplitude at single inter-
face of each gap. Z1 and Z2 are the impedances of the
waveguide and the discontinuity, respectively. 0 � X � 1
is a real number determined by the geometry of the gap.
Having two gaps, as shown in Fig. 1(a), then creates a
cavity (with a cavity resonance frequency !r).

The presence of the cavity spoils the transmission spec-
trum from being a universal function of �Ek ���=
�V2=vg�, and the shape of the spectrum strongly depends
on the value of �r, the qubit transition energy �, and the
coupling strength V. Figure 3 shows the transmission spec-
trum of the total system for several different scenarios.
When the Cooper pair box is in resonance with the reso-
nator, the resonance peak splits and shows vacuum Rabi
splitting, as shown in Fig. 3(a). From the transfer matrices,
it can be rigorously shown that the splitting is always sym-
responding to Fig. 1(a). The frequency is in units of !0 �

2�vg=d, V2=vg�10�5!0, Z1�50, and Z2��1500i. (a) Gray
line: the cavity mode without the Cooper pair box. The reso-
nance peak is located at !r � 1:011 487 38!0. Solid line: vac-
uum Rabi splitting. The Cooper pair is in resonance with the
cavity. X � 0:2 (j �rj ’ 0:9996). (b) Off resonance. Solid line:
� � !r. Dashed line: � � 1:0125!0. Gray line: � �
1:0146!0. (c) Off resonance for leaky cavity. � �
1:011 487 38!0. Solid line: X � 0:5 (j �rj ’ 0:996). Dashed line:
X � 0:7 (j �rj ’ 0:984). Gray line: X � 0:96 (j �rj ’ 0:525). Inset
shows the details of the overlapping peaks at normalized fre-
quency around 1.01. (d) On resonance (zero detuning) for the
leaky cavity. Solid line: � � 1:017 631!0, X � 0:5 (j �rj ’
0:996). Gray line: � � 1:030 651!0, X � 0:7 (j �rj ’ 0:984).
Inset shows the case when the coupling is 5 times larger:
V2=vg � 25
 10�5!0, � � 1:030 651!0, X � 0:7.
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FIG. 4. One-photon switching. (a) Energy diagram of the
single Cooper pair box. The dashed and the solid curves repre-
sent before and after the change of magnetic flux, respectively.
The gray curve denotes the noninteracting case. 4Ec is adopted
as the energy unit. (b) The transmission peaks for a qubit in a
cavity coupled to the waveguide. The solid and dashed curves
correspond to those in (a), respectively. The gray line denotes the
change of transmission.
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metric at resonance, even for a very leaky cavity. The
splitting and the line shape, however, become asymmetric
at off resonance. When the Cooper pair box is proceedingly
detuned away from resonance, the two vacuum Rabi split-
ting peaks behave differently in the changes of the loca-
tions and the line shapes. Figure 3(b) shows the evolution
of the two peaks when the Cooper pair box is brought away
from resonance towards higher frequency (����!r>
0). The high frequency peak moves away and narrows at a
rate faster than the low frequency peak does. The case
when �<0 behaves oppositely. Figure 3(c) shows the
transmission spectrum for a leaky (low-Q) cavity at off
resonance. The sharp Fano line shape becomes evident at
large detuning [Fig. 3(c), inset]. Figure 3(d) shows the case
of a low-Q cavity and zero detuning. The radiative rate of
the Cooper pair box into the one-dimensional continuum is
strongly enhanced by a factor ofQ relative to the rate in the
absence of the cavity [22]. In all cases, the coupled system
shows a transmission dip (T � 0) at qubit transition fre-
quency �.

By dynamically tuning the transition energy of the two-
level system, the transmission of the single photon can be
switched on or off. For the single Cooper pair box, the
transition energy can be tuned by the magnetic flux through
the Josephson junction loop; for quantum dots or hyperfine
atomic energy levels, this can be achieved through dc Stark
effect. For the single Cooper pair box at the degeneracy
point, when EJ is changed to E0J by varying the magnetic
flux, the resonance peak shifts from ! to !0, as shown in
Fig. 4. [Note !�!0� is not equal to EJ�E

0
J�, due to the

coupling with the waveguide propagating modes]. Conse-
quently, an original on resonance photon at frequency !
would become off resonance, as long as the frequency shift
is larger than the linewidth of the transmission peak, as
shown in Fig. 4(b). If the even sharper Fano resonance peak
is employed [Fig. 4(b), inset], the transmission can be
switched to any predesigned value with a tiny change in
the magnetic field. The SQUID loop area in Ref. [4] is of
the order of 1 �m2, the change in magnetic field is esti-
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mated to be roughly of the order of 0:5
�0=�1 �m2� ’
10�3 T. The switching ability is limited by the modulation
speed of the external magnetic field through the SQUID
loop. We note that the one-photon switching capability can
also be realized by a Mach-Zehnder type interferometer
using nonlinear index modulation [23]. The advantage of
tuning the transition energy of qubits is the much smaller
footprint of the device. It is also possible to achieve the
switching via ac pulses with an additional probe gate [8].

As a final remark, we note that this transfer matrix
method can deal with different types of cavity walls,
such as dielectric slabs, as well. Moreover, it is also
straightforward to study the entanglement of multiple qu-
bits via coupling through the one-dimensional continuum
[3,6]. By coupling a qubit to a cavity and a one-
dimensional waveguide, the transport properties can be
manipulated. Furthermore, the Cooper pair box is a class
of particularly versatile qubit, for both the physics and the
mesoscopic scale allow large tuning capability. We specu-
late that further clever designs, such as the presence of
additional spatial symmetries of the qubits, can be ex-
ploited and for sure will bring a much richer content to
the field of solid-state realization of quantum computing
and quantum information processing devices.
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[23] M. Soljačić et al., J. Opt. Soc. Am. B 19, 2052 (2002).


