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Describing Oscillations of High Energy Neutrinos in Matter Precisely
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We present a formalism for precise description of oscillation phenomena in matter at high energies or
high densities, V > �m2=2E, where V is the matter-induced potential of neutrinos. The accuracy of the
approximation is determined by the quantity sin22�m�V=2�V, where �m is the mixing angle in matter
and �V is a typical change of the potential over the oscillation length (l� 2�=V). We derive simple and
physically transparent formulas for the oscillation probabilities, which are valid for arbitrary matter
density profiles. They can be applied to oscillations of high-energy (E> 10 GeV) accelerator, atmos-
pheric, and cosmic neutrinos in the matter of the Earth, substantially simplifying numerical calculations
and providing an insight into the physics of neutrino oscillations in matter. The effect of parametric
enhancement of the oscillations of high-energy neutrinos is considered.
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Introduction.—Neutrino physics enters a new phase
now, where the objectives are precision measurements of
the parameters, studies of subleading oscillation effects,
and searches for new physics beyond the already standard
picture, which includes nonzero neutrino masses and mix-
ing. Detection of neutrinos from new sources, in particular,
of cosmic neutrinos, is in the agenda.

Substantial new information is expected from the studies
of high-energy (E> 1 GeV) neutrinos. This includes in-
vestigations of atmospheric neutrinos with new large vol-
ume detectors [1], long baseline accelerator experiments
[2], and detection of cosmic neutrinos from galactic and
extragalactic sources [3]. Another possible source of neu-
trinos is annihilation of hypothetical weakly interacting
massive particles (WIMPs) in the center of the Earth and
the Sun [4]. In all these cases beams of high-energy neu-
trinos can propagate significant distances in the matter of
the Earth (or of the Sun) and therefore undergo oscillations
or conversions in matter.

Increased accuracy and reach of neutrino experiments
put forward new and more challenging demands to the
theoretical description of neutrino oscillations. In the
present Letter our primary goal is to study oscillations of
high-energy neutrinos [5], but the formulas we obtain are
actually applicable in a wide range of neutrino energies.
They simplify substantially numerical calculations and
allow a deep insight into the physics of neutrino conver-
sions in matter. In particular, they provide a useful tool for
studying parametric enhancement of neutrino oscillations.
The parametric enhancement occurs when the variation of
the matter density along the neutrino trajectory is in a
certain way correlated with the change of the oscillation
phase [6,7].

Formalism.—We consider oscillations in the 3-flavor
neutrino system (�e; ��; ��), with the mass squared differ-
05=95(21)=211801(4)$23.00 21180
ences �m2
31 and �m2

21 responsible for the oscillations of
atmospheric and solar neutrinos, respectively. We shall
be mainly interested in oscillations of neutrinos with en-
ergies E> �m2

31=2V, where the matter-induced potential
of neutrinos V�x� �

���
2
p
GFNe�x�, with Ne�x� the electron

number density in matter and GF the Fermi constant [8,9].
This corresponds to E> 8–10 GeV for the matter of the
Earth. In this case the 1–2 mixing is strongly suppressed by
matter, and the problem is reduced to an effective two-
flavor one, described by the mass squared difference
�m2 � �m2

31 and mixing angle � � �13 (which is as-
sumed to be nonzero) [10]. In particular, the oscillations
of electron neutrinos are determined by the transition
probability P2 � P��e $ �a�, where �a � sin�23�� �
cos�23��. In terms of P2 the flavor transition probabilities
are P��e $ ��� � sin2�23P2, P��e $ ��� � cos2�23P2

[10].
In the (�e; �a) basis, the evolution matrix S�x� describing

neutrino oscillations satisfies the equation

i
dS
dx
� H�x�S; (1)

with the Hamiltonian

H�x� �
V
2

1 0
0 �1

� �
� �

� cos2� sin2�
sin2� cos2�

� �
: (2)

Here � � �m2=4E; and the first (potential) term domi-
nates in the high-energy limit. However, in most situations
of interest the neutrino path length in matter L satisfies � �
L * 1; therefore, we cannot consider the whole second
term as a small perturbation, and the effect of � on the
neutrino energy level splitting should be taken into ac-
count. For this reason we decompose the Hamiltonian as
H � H0 �HI with
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H0 � !
1 0
0 �1

� �
; HI � sin2��

�� 1
1 �

� �
: (3)

Here

!�x� �
��������������������������������������������������������������
�V=2� � cos2��2 � �2sin22�

q
; (4)

2! being the difference of the eigenvalues of H�x�;

� �
cos2��� V=2�!

sin2��
	
�
V

sin2�
 1: (5)

The ratio of the second and the first terms in the
Hamiltonian (3) is given by the mixing angle in matter
�m: sin2��=! � sin2�m. Therefore, for sin2�m 
 1 the
term HI can be considered as a perturbation. Furthermore,
according to (5), �� sin2�m, so that the diagonal terms in
HI can be neglected in the lowest approximation.

We seek the solution of Eq. (1) in the form S � S0 � SI,
where S0 is the solution of the evolution equation with H
replaced by H0. From (3) we find

S0�x� �
e�i��x� 0

0 ei��x�

 !
; (6)

where

��x� �
Z x

0
dx0!�x0� (7)

is the adiabatic phase. Then, according to (1), the matrix SI
satisfies the equation

i
dSI
dx
� S�1

0 HIS0SI � ~HISI; (8)

where ~HI � S�1
0 HIS0 is the perturbation Hamiltonian in

the ‘‘interaction’’ representation. Equation (8) can be
solved by iterations: SI � 1� S�1�I � . . . , which leads to
the standard perturbation series for the S matrix. For
neutrino propagation between x � 0 and x � L we have,
to the lowest nontrivial order,

S�L� � S0�L�
�
1� i� sin2�

Z L

0
dx 0 ei2��x�

e�i2��x� 0

 !�
:

(9)

The �e $ �a transition probability P2 is given by the
squared modulus of the off-diagonal element �S�L��ae:

P2 � �2sin22�
��������
Z L

0
dxe�i2��x�

��������2
: (10)

For density profiles that are symmetric with respect to
the center of the neutrino trajectory, V�x� � V�L� x�,
Eq. (10) gives

P2 � 4
�

�m2

4E

�
2
sin22�

�Z L=2

0
dz cos2��z�

�
2
; (11)

where z � x� L=2 is the distance from the midpoint of
the trajectory and ��z� is the phase acquired between this
midpoint and the point z.
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The transition probability P2 scales with neutrino energy
essentially as E�2. The accuracy of Eq. (10) also improves
with energy as E�2. This is illustrated by Figs. 1(a) and
1(b). One can see that already for E * 8 MeV the accuracy
of our analytic formula is extremely good. Note that when
neutrinos do not cross the Earth’s core ( cos�>�0:837,
where � is the zenith angle of the neutrino trajectory) and
so experience a slowly changing potential V�x�, the accu-
racy of the approximation (10) is very good even in the
Mikheev-Smirnov-Wolfenstein (MSW) resonance region
E� 5–8 GeV. The accuracy of Eq. (10) is also good for
energies below �2 GeV (not shown in the figure); how-
ever, in this region the domain of the applicability of (10) is
relatively narrow, since for E & 0:5 GeV the oscillations
driven by the ‘‘solar’’ parameters (�m2

21; �12) can no lon-
ger be neglected.

To understand the remarkable accuracy of Eq. (10),
we find the correction �P2 to the transition probability
in (10) emerging in the next nontrivial order in HI. Note
that from the above considerations one can expect �P2=P2

to be proportional to sin2�m. Furthermore, for uniform
matter Eq. (10) reproduces the exact transition probability;
therefore, one expects �P2=P2 / V0. A straightforward
calculation indeed gives �P2=P2 ’ sin22�m��V=4�!� ’
sin22�m��V=2�V�, where �V is the change of the poten-
tial over the oscillation length �=!, and the last equality
holds in the high-energy regime. For slowly changing
density this is equivalent to �P2=P2 ’ sin22�m�V 0=4!2�.
Introducing the adiabaticity parameter 	 � 4�!=
�sin2�m�V�, we find that �P2=P2 ’ sin2�m	�1, and
therefore for small mixing in matter our approximation is
better than the adiabatic one. At the same time, for
�V=4�!< 1 it is better than the simple expansion in
powers of sin22�m.

The matter density profile of the Earth satisfies V0=V2 &

0:5, and therefore for oscillations in the Earth our approxi-
mation is expected to work well when sin22�m 
 1. This
is fulfilled in the high-energy (or, equivalently, high-
density) limit EV=�m2  cos2�, i.e., above the MSW
resonance. If the vacuum mixing angle is small (� �
�13), our expansion parameter is also small below the
resonance. The above formalism applies in this low energy
case as well, with only minor modifications: the sign of H0

in (3) has to be flipped, and correspondingly one has to
replace !! �! in Eq. (5). Expressions for the transition
probability in Eq. (10) and (11) remain unchanged. Thus,
our results are in general valid outside the MSW resonance
region, which for small � is very narrow. For the non-
resonant channels ( �� channels for �m2 > 0 or � channels
for �m2 < 0) and small vacuum mixing, our formulas are
valid in the whole diapason of energies because sin2�m is
always small.

If �13 is very small or vanishes, �e $ ��;� oscillations
are driven by �m2 � �m2

21 and the large mixing angle
� � �12. The oscillation probabilities can then be ex-
pressed through another effective two-flavor probability,
1-2
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FIG. 1 (color online). Transition probability P2 vs neutrino energy E for different trajectories inside the Earth [panel (a)] and vs the
cosine of the zenith angle of the neutrino trajectory, cos�, for different neutrino energies [panel (b)]. Solid curves are the results of
exact numerical calculations; dashed curves are obtained using formula (10). Small window (b’) in panel (b) shows the values of the
parameter X3 calculated in the three-layer model of the Earth’s density. Panel (c): contours of constant phases �m (solid line), �c
(dashed line), and X3 � 0 (dotted line). The numbers at the curves are the values of the phases in units of �. The shaded areas in panels
(b) and (c) correspond to the Earth’s core. For all panels we take sin22�13 � 0:15 and �m2 � 2� 10�3 eV2.
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~P2 � ~P2��m2
21; �12; V�x��, in terms of which P��e $

��� � cos2�23
~P2, P��e $ ��� � sin2�23

~P2 [11]. For
EV=�m2

21  cos2�12 (which for the typical densities in-
side the Earth corresponds to E * 0:5 GeV), the probabil-
ity ~P2 is very well approximated by Eq. (10).

Let us consider the case of symmetric matter density
profiles. Integrating (11) by parts, one finds

P2 � sin22�0
m

�
sin�L �!0

Z L=2

0
dz
d!
dz

1

!2 sin2��z�
�

2
;

(12)

where �0
m � �m�V0�, !0 � !�V0�, V0 being the potential

at the initial and final points of the neutrino trajectory, and
�L is the adiabatic phase acquired along the entire neutrino
path. If the potential changes slowly with distance, so that
!�2d!=dz
 1, the second term in (12) can be neglected,
and P2 reduces to the usual adiabatic probability in sym-
metric matter: Padiab � sin22�0

msin2�L. The second term
in (12) describes the effects of violation of adiabaticity.

Let us apply the above results to neutrino beams cross-
ing the Earth. According to the preliminary reference earth
model (PREM) [12], the Earth density profile can be
described as several spherical shells of radii Ri with
smooth density change within the shells and sharp change
at the borders between them. Then, along a direction from
the center of the Earth outwards, !�z� decreases abruptly
from !�i to !�i in very narrow regions around Ri.
Therefore, d!=dz is large in these narrow regions and
small outside them. The integration in (12) can then be
easily done, leading to

P2 	 sin22�0
m

�
sin�L �!0�i

!�i �!
�
i

!�i !
�
i

sin2�i

�
2
: (13)

Here �i is the adiabatic phase acquired by neutrinos be-
tween the points z � 0 and z � Ri.

Parametric enhancement of oscillations.—Inside the
Earth, all the density jumps between different shells, ex-
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cept those between the mantle and core are relatively small
[12]. Therefore, the density profile felt by neutrinos cross-
ing the core of the Earth can be approximated by three
layers (mantle-core-mantle). Equation (13) then gives

P2 	 sin22�0
m

�
sin��c � 2�m� �

!0

!m

�
1�

!m

!c

�
sin�c

�
2
;

(14)

where !m and !c are the values of !�x� in the mantle and
core on the respective sides of their border, and �m and �c
are the phases acquired in the mantle (one layer) and core.

For neutrino trajectories that cross the mantle only
(�c � 0), Eq. (14) reduces to the adiabatic probability.
The passage of neutrinos through the core can lead to an
enhancement of the oscillations. As follows from (14), the
maximum enhancement can be achieved when sin��c �
2�m� and sin�c are of opposite sign and maximal ampli-
tude: sin�c � � sin��c � 2�m� � �1, i.e., when

�c �
�
2
� �n; �m �

�
2
� �k: (15)

Here n and k are integers. In this case the enhancement
factor is

Pmax
2

sin22�m
	

�
2�

Vm
Vc

�
2
	 2:5; (16)

where sin22�m in the denominator corresponds to the
maximum possible transition probability for neutrinos
crossing only the mantle, and we have taken into account
that !0 ’ !m and at high energies !m=!c 	 Vm=Vc.

The condition (15) and the enhancement described by
Eq. (16) are the particular cases of the parametric reso-
nance condition and the parametric enhancement of neu-
trino oscillations [6,7]. In [13] it was shown that in the case
of matter consisting of alternating layers of two different
constant densities and (in general) different widths the
parametric resonance condition is
1-3
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X3 � ��sin�m cos�c cos2�m � cos�m sin�c cos2�c�

� 0; (17)

where �m;c and�m;c are the mixing angles and the acquired
oscillations phases in the layers m and c. This condition
can also be used as an approximate one when matter
density inside the layers is not constant but varies suffi-
ciently slowly. For neutrino oscillations in the Earth we
identify the layers m and c with the mantle and core. Since
in the energy region sin2��
 V one has �m 	 �c 	 �=2,
condition (17) reduces to

X3 ’ sin��m ��c� � 0: (18)

Equation (15) is a particular realization of this condition.
In the high-energy limit the parametric resonance condi-
tion (15) was previously considered in the framework of
active-sterile atmospheric neutrino oscillations in [14]. A
sizable amplification is also possible if the equality X3 � 0
is realized differently from (15), i.e., when the two terms in
(17) do not separately vanish but cancel each other.
Interestingly, the parametric resonance condition in
Eq. (17) or (18) can indeed be satisfied for neutrino oscil-
lations in the Earth [13–15].

As can be seen in Fig. 1(b), for �e $ ��;� oscillations of
high-energy neutrinos in the Earth, there are two regions of
neutrino zenith angles in which the condition X3 � 0 is
satisfied and two prominent peaks appear due to the para-
metric enhancement: cos� 2 ��1;�0:93� (the inner
peak) and cos� 2 ��0:88;�0:84� (the outer peak). The
peaks exceed the maximal allowed by the MSW effect
value of probability sin22�m by up to a factor of 2.

For neutrino energies E ’ 10–15 GeV, the oscillation
phases corresponding to the inner peak are �m ’ �=4,
�c ’ 7�=4, while for the outer peak they are �m ’
0:35�, �c ’ 0:65�. In both peaks to a good accuracy
�m ��c � n�, so that Eq. (18) is satisfied. The phases
in the outer peak are closer to the realization (15) of
condition (18), and therefore in this peak the parametric
enhancement of oscillations is closer to the maximal pos-
sible one. From Fig. 1(c) one can see that at E ’ 21 GeV
the maximum enhancement condition (15) can be exactly
realized in the outer peak. For neutrinos of very high
energies (E * 100 GeV), it can be realized nearly exactly
in the inner peak.

Conclusion.—The matter density profile of the Earth is
not sufficiently well known. In view of this, our formulas
can be used to understand the relevance of various possible
features of the profile (e.g., small jumps) for the oscilla-
tions of high-energy neutrinos. Namely, they allow us (i) to
quantify the effects that uncertainties in the profile will
have on the interpretation of the results of future experi-
ments; (ii) to understand what can be learned on the Earth
interior from the analyses of atmospheric and accelerator
data once the neutrino parameters have been determined;
(iii) to study the effects of proper averaging over the energy
spectrum of the neutrino beam. In contrast to the oscilla-
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tion tomography with low energy (e.g., solar) neutrinos,
which is sensitive to small structures near the surface of the
Earth, high-energy neutrinos can probe large scale struc-
tures both in the outer and inner regions of the Earth.

The obtained formulas give a precise and detailed de-
scription of the energy and zenith angle dependences of the
oscillation effects in the Earth. In particular, we show that
the two peaks in the zenith angle distribution of the core-
crossing neutrinos (a generic feature at high energies) are
due to the parametric enhancement of the oscillations.
Observation of these peaks in future high statistics experi-
ments will not only provide an evidence for the parametric
resonance, but also (i) confirm the validity of the ‘‘stan-
dard’’ theory of oscillations (the standard form of the
matter potential at high energies and dynamical features
of the oscillations), (ii) give a unique information on the
inner regions of the Earth, (iii) provide a cross-check of the
values of the oscillation parameters, and (iv) restrict non-
standard physics effects.
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