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Maximum Elastic Deformations of Compact Stars with Exotic Equations of State
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I make the first estimates of maximum elastic quadrupole deformations sustainable by alternatives to
conventional neutron stars. Solid strange quark stars might sustain maximum ellipticities (dimensionless
quadrupoles) up to a few times 10�4 rather than a few times 10�7 for conventional neutron stars, and
hybrid quark-baryon or meson-condensate stars might sustain up to 10�5. Most of the difference is due to
the shear modulus, which can be up to 1033 erg=cm3 rather than 1030 erg=cm3 in the inner crust of a
conventional neutron star. Maximum solid strange star ellipticities are comparable to upper limits
obtained for several known pulsars in a recent gravitational-wave search by LIGO. Maximum ellipticities
of the more robust hybrid model will be detectable by LIGO at initial design sensitivity. A large shear
modulus also strengthens the case for starquakes as an explanation for frequent pulsar glitches.
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The LIGO Science Collaboration recently used data
from the second LIGO science run (S2) to set upper limits
on gravitational-wave emission from 28 known pulsars, 9
of which have no competing upper limit from radio obser-
vations [1]. For those 9 pulsars the best S2 upper limits on
neutron star ellipticity [a dimensionless quadrupole mo-
ment, see Eq. (2)] are a few times 10�5. With better data
now being analyzed, LIGO will soon be sensitive to ellip-
ticities of 10�6 or less. This raises the question of when a
detection might be possible, or when enough nondetections
(upper limits) begin to confront some theoretical models of
dense matter. The answer depends on the maximum ellip-
ticities sustainable in those models. I make the first esti-
mates of maximum ellipticities for several exotic matter
models and find that the LIGO S2 search was already
sensitive to the upper end of the theoretical range. LIGO
observational results are becoming astrophysically inter-
esting years sooner than previously expected.

The maximum elastic deformation sustainable by a neu-
tron star has been addressed several times in the past few
decades—see [2], and references therein. A conventional
neutron star consists of a liquid nuclear-matter core cov-
ered by a thin solid crust, which is responsible for the
deformation and whose microphysics can be extrapolated
conservatively from laboratory nuclear physics. More ex-
otic models of compact stars have been proposed, some
including large solid cores (see [3] for a summary), but the
maximum deformation has not been quantitatively ad-
dressed. Historically the problem was of interest first in
relation to the ‘‘glitch’’ phenomenon in pulsars, which was
believed to be related to starquakes [4]. However, the total
elastic energy stored in a maximally strained crust is far too
low to explain the strength and frequency of the glitches of
the pulsar Vela X-1 [5]. Occasionally works on exotic
compact stars have mentioned that solid cores might revive
the starquake glitch mechanism, but without estimating
numbers.
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In this Letter, I estimate maximum elastic deformations
sustainable by exotic alternatives to neutron stars and work
out the implications for gravitational-wave emission and
pulsar glitches. Of the models extant in the literature, solid
strange stars allow the largest ellipticities—up to 103 times
those of neutron stars—although this model is highly
speculative. Hybrid quark-baryon stars and stars with
charged meson condensates, both based on more robust
theories, might allow ellipticities up to a few times 101

more than those of conventional neutron stars. This makes
detectable gravitational-wave emission a prospect for ini-
tial LIGO rather than advanced LIGO and makes the
starquake model of glitches viable again.

There are several sources of uncertainty in such esti-
mates. The largest is the matter model itself—maximum
ellipticities vary by 103 between conventional neutron stars
and solid strange stars. The second largest is the breaking
strain. I quote fiducial numbers for a breaking strain of
10�2, which is near the maximum for terrestrial alloys and
may be favored by observations of neutron stars in low-
mass x-ray binaries, but the breaking strain could be lower
by 102–103 [2]. For hybrid and condensate stars, charge
screening might bring the maximum ellipticity down to
that of a neutron star. These uncertainties justify making
several approximations which simplify the calculations at a
cost of introducing relatively small errors as in [2].
Relativistic gravity and rotational effects can change the
density profile of a star by tens of percent, but they cancel
to some extent and are smaller than the effect of varying
the star’s mass a few percent [3], and thus I neglect them.
Because of the high Fermi energies involved, finite tem-
perature plays a negligible role in determining the maxi-
mum ellipticity. In the strange and hybrid stars, a normal
solid crust is believed to be still present, but its contribu-
tion to the ellipticity is a few percent correction to that
of the core. I quote maximum ellipticities including the
maximum 200% contribution from the self-gravity of the
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deformation [2,6], but that could go down by a factor of 2.
Further calculations, details, and uncertainties will be pre-
sented elsewhere [7].

Neutron stars.—Reference [2] computes in its Eq. (69) a
maximum m � 2 quadrupole moment for a neutron star
using a chemically detailed model of the crust. Correcting
the definition of shear modulus [6], it reads
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where �max is the breaking strain of the crust.
The quadrupole (1) can be converted to the ellipticity

� � �Ixx � Iyy�=Izz used in gravitational-wave papers [1]:
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Q22=Izz; (2)

where the z axis is the rotation axis and Iab is the moment
of inertia tensor. For conventional neutron stars, Bejger and
Haensel [8] find that the approximation
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is accurate to a few percent for a variety of equations of
state. Thus we can write the maximum ellipticity of a
conventional neutron star as
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For the fiducial values of mass, radius, and breaking strain,
�max is 2� 10�7 (6� 10�7 with self-gravity).

The generalization of Eq. (1) to arbitrary equations of
state can be obtained by combining Eqs. (67) and (64) of
Ref. [2] as
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(5)

where � is the shear modulus (nonzero only in the solid
part of the star), g is the local gravitational acceleration,
and U � 2� d lng=d lnr. The two bounding cases are
incompressible matter and infinitely compressible matter
(a point mass). Note that the latter is equivalent to a
conventional neutron star, where the mass of the crust is
a small fraction of the mass of the star. For a light crust,
U� 1 and g 	 GM=r2; for the incompressible case, U �
3 and g � GMr=R3. If � is almost constant [or is replaced
by an appropriately averaged value as below Eq. (68) of
Ref. [2] ], Eq. (5) simplifies for an incompressible com-
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pletely solid star to

Q22;max � ��R6�max=�GM�; (6)

where � 	 13. Evaluating Eq. (5) for a conventional neu-
tron star with a thin crust and liquid core, � becomes about
120�R=R, where �R 	 R=10 is the thickness of the crust,
and thus � is numerically almost identical. The appropri-
ately averaged shear modulus from Ref. [2] is � 	 4�
1029 erg=cm3, a factor of a few below its maximum value
at the bottom of the crust.

Solid strange stars.—The idea that some ‘‘neutron
stars’’ are in fact made of strange quarks was proposed in
the 1970s [9]. The idea that such stars are solid is currently
being pursued by Xu’s group, beginning with Ref. [10].
(This is distinct from a crystalline color superconducting
quark phase [11], which I do not consider here.) Xu notes
that the burst oscillation frequencies observed in low-mass
x-ray binaries correspond to the first few torsional modes
of a solid strange star—if the matter has a typical shear
modulus � 	 4� 1032 erg=cm3, a thousand times the
typical value in the crust of a conventional neutron star.
Xu estimates that quarks clustered in groups of 18 or so
could produce such a shear modulus. Since Ref. [10] was
published, the burst oscillation frequency has been ob-
served to closely match the spin frequency of the neutron
star in at least one system [12]. This renders the identi-
fication with torsional mode frequencies problematic.
However, the x-ray burst oscillation mechanism may be
different for different binaries, and it is worth considering
the effect on the maximum elastic deformation if the shear
modulus is very high for whatever reason.

Using Xu’s shear modulus in Eq. (6) gives

Q22;max � 2:8� 1041 g cm2

�
�

4� 1032 erg=cm3

��
�max

10�2

�

�

�
R

10 km

�
6
�
1:4M�
M

�
: (7)

Bejger and Haensel [8] find a different empirical formula
for the moment of inertia for strange stars,

Izz � 1:7� 1045 g cm2
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This combined with Eq. (7) yields a maximum ellipticity

�max � 2� 10�4
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for solid strange stars, where I have inserted the scalings of
� from Ref. [10] except for the f and the x dependence,
which roughly cancel out. With self-gravity, the canonical
number is �max � 6� 10�4.
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Hybrid and meson-condensate stars.—Glendenning
[13] showed that the phase transition from baryonic matter
to quark matter occurs over a range of pressures rather than
at a single value. (The argument holds for stars with
charged meson condensates as well as for stars with
quark-baryon cores [3]. The numbers are very similar, so
I discuss only hybrid stars.) Purely baryonic matter at high
densities is isospin asymmetric, which is energetically
unfavorable. Moving toward isospin symmetry (creating
more protons) would require negative charges to compen-
sate, and leptons are not favored since they are nearly
massless. When the quark phase becomes available, bar-
yonic matter can attain positive charge density by moving
negative charge into areas of quark matter.

The crystal structure of the mixed phase changes with
density. Immediately above the threshold density for the
beginning of the phase transition, the mixed phase consists
of small quark droplets arranged in a bcc lattice in a
baryonic background. As the density increases, the drop-
lets grow and merge to become rods, then slabs. Eventually
the baryonic matter becomes the minority slabs, then rods,
then finally droplets before disappearing entirely. The lo-
cations of these layers are highly parameter dependent; as
an upper limit the mixed-phase crystal can occupy the
innermost 8 km of the star [3].

The shear modulus of a bcc lattice of point charges can
be written in the parameters of Ref. [3] as [2,5]

� � 0:075q2D6=S4: (10)

I have assumed spherical droplets of (esu) charge density
q, diameter D, and spacing S (Wigner-Seitz cell diameter,
or

���
3
p
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nonsphericity of the droplets reduce this by an amount that
is small in most of the layer. Typical numbers from Chap. 9
of Ref. [3] give
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This is of order 103 times the typical value in the inner
crust, mainly due to the charge of the droplets (about 103

rather than Z < 55 in the crust) although the density of
droplets is slightly greater too [14].

The dominant correction to Eq. (11) is due to charge
screening. This effect is difficult to evaluate precisely, but a
rough estimate can be made as follows. Heiselberg,
Pethick, and Staubo [15] estimate the screening length
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in the mixed phase as 10 fm in the baryonic matter and 5 fm
in the quark matter. (HereQi is the charge of species i, ni is
its number density, and �i is its chemical potential.)
Detailed calculations [16] of the partial derivatives in
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Eq. (12) for baryonic matter without a quark phase suggest
that � 	 5 fm is a lower limit. Since these lengths are
comparable to the droplet size and separation, screening
will appreciably reduce electrostatic effects but not make
them negligible. (The leptons can be neglected since their
charge density is tiny [3].)

First, note that screening does not appreciably change
the droplet size. The quark volume fraction � 	 �D=S�3 is
set by, e.g., the pressure, and D is found by minimizing the
sum of surface and Coulomb energy densities at fixed �
[3]. The mean charge density �q is then fixed even under
rearrangement of charges due to screening. The Coulomb
energy density can be written g�D=��C���D2, where g is a
geometric factor. Going from uniform density (D=�� 1)
to a shell of charge (D=�! 1) reduces g by only 1=6.
Using a rough approximation g / 5� exp��D=��, the
screened D is related to the unscreened D0 by

D3
0 � D3 �D4=�10�� exp��D=��: (13)

Since D0 and � are comparable, this is a few percent
correction at most, and since �D�D0� � �, even the
exponential factor is corrected only by a few percent.

Given that the droplet size does not change appreciably,
and given that the charges inside the droplet rearrange
themselves respecting spherical symmetry, the problem
outside the droplet reduces to the classic screening prob-
lem. The potential is multiplied by the Yukawa factor
exp��r=��. Since the shear modulus is roughly a second
derivative of the potential energy, it is multiplied by
roughly this factor. For typical D and S values, screening
then reduces the shear modulus by e3 	 20 (� 	 10 fm) or
e6 	 400 for � 	 5 fm. The upper limit (weak screening)
on the shear modulus is then � 	 2� 1031 erg=cm3.

The effective shear modulus for the rod and slab con-
figurations can be estimated from the droplet result. Matter
made of rods cannot resist a shear stress along the axis of
the rods, but will have a perpendicular response similar to
that of the droplets. This anisotropic case requires an
elastic modulus tensor rather than a shear modulus scalar.
However, if the glitch history of the neutron star has led to
granulation [3], the formation of small domains with dif-
ferent principal directions, then a macroscopic rms re-
sponse of the matter averaged over many domains is
isotropic with an effective shear modulus reduced by��������

2=3
p

or
��������
1=3

p
, which can be neglected here.

Now evaluate Eq. (5). The density of the core of the star
varies only by a factor of a few, so use the incompressible
limit. Most of the integral comes from the droplet and rod
layers, where the weak-screening shear modulus is roughly
constant at 2� 1031 erg=cm3. Then
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where Rc is the radius of the hybrid core. Bejger and Haensel [8] find that hybrid stars obey the same moment of inertia
relation (3) as normal neutron stars, so
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for a fiducial value of 3� 10�6, or up to 9� 10�6 with the
self-gravity of the deformation.

Implications.—What are the immediate consequences
for LIGO? The S2 paper [1] quotes direct gravitational-
wave observational upper limits on � for 28 pulsars.
However, 19 of these pulsars already have lower indirect
upper limits on � (typically 10�8 or less) due to the
measured spin-downs. The remaining 9 pulsars are in
globular clusters where the spin-down is obscured by
acceleration, and thus have no competing upper limit.
The S2 upper limits on � for these are 4–24� 10�5, all
within the maximum I estimate for a solid strange star.
With LIGO’s upcoming data run at full initial sensitivity,
the same 9 pulsars will be observable at � of 1–8� 10�6,
within the maximum for hybrid stars; and the Crab pulsar
will be observable at � � 1:2� 10�4, 6 times less than its
spin-down limit and within the solid strange star range
[17]. An all-sky search for unknown neutron stars could
detect hybrid stars within a kpc and solid strange stars at
the galactic core with tens of teraflops computing power
[17].

If a pulsar is observed in gravitational waves with �

10�7, it cannot be a conventional neutron star. An upper
limit (nondetection) at higher � does not rule out any exotic
model—a given star may happen to be nowhere near its
breaking strain. However, with enough strict upper limits,
population statistics and deformation mechanisms can be
constrained.

Bildsten [18] proposed that the spin frequencies of stars
in low-mass x-ray binaries are set by equilibrium between
accretion torque and gravitational radiation from thermally
induced deformations of the crust. In order to match the
observed spin frequencies, this requires quadrupoles 	
1038 g cm2. For the exotic stars considered here, such
quadrupoles under anisotropic accretion are possible if
the breaking strain is smaller than 10�3 or if the detailed
accretion physics (temperature dependence, spreading of
material, etc.) prevents achieving breaking strain.

Gravitational waves from freely precessing neutron stars
have been considered poor prospects even for advanced
LIGO. But if internal damping is weak, a population of
stars precessing after birth with � � 10�4 would be de-
tectable with broadband advanced LIGO [19].

A starquake that causes a glitch will also cause a burst of
gravitational waves as the modes of the star are excited and
ring down. This amplitude is determined by the energy in
the glitch, which is determined by the observed frequency
jump and thus is not affected by exotic matter models. But
the maximum elastic energy in the star scales as the shear
21110
modulus, and thus is up to 103 times larger for quark stars
than for conventional neutron stars. Vela glitches are still
too large and frequent (by several orders of magnitude) to
be explained as quakes, but the mean time predicted be-
tween quakes is reduced for the Crab pulsar to a few years
[5]—comparable to what is observed.

After this Letter was submitted, SGR 1806-20 under-
went a giant superflare [20,21] with estimated energy more
than 1046 erg. Theoretical models equate this energy with
the maximum elastic energy of the star, which is problem-
atic for a normal crust but feasible with the exotic models
considered here.
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