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We give an explicit tight lower bound for the entanglement of formation for arbitrary bipartite mixed
states by using the convex hull construction of a certain function. This is achieved by revealing a novel
connection among the entanglement of formation, the well-known Peres-Horodecki, and realignment
criteria. The bound gives a quite simple and efficiently computable way to evaluate quantitatively the
degree of entanglement for any bipartite quantum state.
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Quantum entangled states are used as key resources in
quantum information processing and communication, such
as in quantum cryptography, quantum teleportation, dense
coding, error correction, and quantum computation [1]. A
fundamental problem in quantum information theory is
how to quantify the degree of entanglement in a practical
and operational way [2,3]. One of the most meaningful and
physically motivated measures is the entanglement of for-
mation (EOF) [2,3], which quantifies the minimal cost
needed to prepare a certain quantum state in terms of
EPR pairs. Related to the EOF, the behavior of entangle-
ment has recently been shown to play an important role in
quantum phase transition for various interacting quantum
many-body systems [4] and may significantly affect mac-
roscopic properties of solids [5]. Moreover, it has been
shown that there is a remarkable connection between en-
tanglement and the capacity of quantum channels [6]. A
quantitative evaluation of EOF is thus of great significance
both theoretically and experimentally.

Considerable efforts have been spent on deriving EOF or
its lower bound through analytical and numerical ap-
proaches, for some limited sets of mixed states [7–17].
Among them, the most noteworthy results are an elegant
analytical formula for two qubits [7,8], explicit derivations
for isotropic states [9], Werner states [11], and Gaussian
states with certain symmetries [17]. Closed-form expres-
sions have also been given for special classes of high
dimensional states [12–14] and rotationally symmetric
states in 2 � n systems [15] where n is the dimension of
the Hilbert space associated with the second subsystem.
Possible lower bounds have been given in [16] only for 2 �
n states. Notable progress has been achieved in [18,19] in
giving analytic lower bounds [that can be optimized further
numerically [18] ] for the concurrence, which permits to
furnish a lower bound of EOF for a generic mixed state.
However, this lower bound is not explicit except for the
case of 2 � n systems [19]. For low dimensional systems,
numerical methods [10] can be used to estimate EOF.
Nevertheless, they are generally time consuming and often
not very efficient. The notorious difficulty of evaluation for
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EOF is due to the complexity to solve a high dimensional
optimization problem, which becomes a formidable task,
as the dimensionality of the Hilbert space grows.

In this Letter, we present the first analytical calculation
of a tight lower bound of EOF for arbitrary bipartite
quantum states. An explicit expression for the bound is
obtained from the convex hull of a simple function, based
on a known result in [9]. This is achieved by establishing a
key connection between EOF and two strong separability
criteria, the Peres-Horodecki criterion [20,21] and the
realignment criterion [22,23]. The bound is shown to be
exact for some special states such as isotropic states [9,24]
and permits to provide EOF estimations for many bound
entangled states (BES). It provides a very simple comput-
able way for getting information on the actual value of
EOF, and, in particular, fills significantly the large gap
between the nice result on the two qubits case [7,8] and a
few other existing results (mentioned above) for high
dimensional mixed states.

Let us first recall some useful notations. A pure m � n
�m � n� quantum state j i is a normalized vector in the
tensor product H A �H B of two Hilbert spaces H A;H B
for systems A;B. The entanglement of formation is defined
to be E�j i� � S��A� where �A � TrB�j ih j� is the re-
duced density matrix. Here S��A� is the entropy

S��A� � �
Xm
i�1

�ilog2�i � H� ~��; (1)

where �i are the eigenvalues of �A and ~� is the Schmidt
vector ��1; �2; . . . ; �m�. It is evident that E�j i� vanishes
only for product states. This definition can be extended to
mixed states � by the convex roof,

E��� � min
fpi;j iig

X
i

piE�j ii�; (2)

for all possible ensemble realizations � �
P
ipij iih ij,

where pi � 0 and
P
ipi � 1. Consequently, a state �

is separable if and only if E��� � 0 and hence can be
represented as a convex combination of product states as
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� �
P
ipi�

A
i � �

B
i , where �Ai and �Bi are pure state density

matrices associated to the subsystems A and B, respec-
tively [25]. The measure Eq. (2) satisfies all the essential
requirements of a good entanglement measure: convexity,
no increase under local quantum operations and classical
communications on average, no increase under local mea-
surements, asymptotic continuity, and other properties
[2,3].

A central idea for our approach is as follows: instead of
the conventional method to make optimization subject to a
large number of constraints in Eq. (2), we look for minimal
admissible E�j ii� for a given j ii with some restrictions
generated from the simple computable Peres-Horodecki
criterion of positivity under partial transpose (PPT crite-
rion) [20,21] and the realignment criterion [22,23]. One
then expects to obtain a tight lower bound through a
convex-roof construction for the pure states. Without loss
of generality, we suppose that one has a general purem � n
quantum state, which can always be written in the standard
Schmidt form

j i �
X
i

������
�i
p

jaibii; (3)

where
������
�i
p

�i � 1; . . .m� are the Schmidt coefficients, jaii
and jbii are the orthonormal basis in H A and H B, re-
spectively. It can be straightforwardly verified that the
reduced density matrices �A and �B have the same eigen-
values�i. It follows from Eq. (1) that E�j i� vanishes only
for a product state and reaches its maximum log2m for a
maximally entangled state.

Let us recollect some details on the two above men-
tioned criteria. Peres made firstly a distinguished progress
in the study of separability [20] by showing that �TA � 0
should be satisfied for a separable state, where �TA stands
for a partial transpose of �with respect to the subsystem A.
It was further shown by Horodecki et al. [21] that �TA � 0
is also sufficient for separability of 2 � 2 and 2 � 3 bipar-
tite systems. In addition k�TAk was shown in Refs. [20,26]
to be invariant under local unitary transformation (LU),
where jj 	 jj stands for the trace norm defined by kGk �
Tr �GGy�1=2. It is clear that � �

P
ijkl�ik;jljaibkihajblj and

�TAik;jl � �jk;il in a suitably chosen orthonormal basis ai
�i � m� and bk �k � n�. Here the subscripts i and j can
be regarded as the row and column indices for the sub-
system A, respectively, while k and l are such indices for
the subsystem B.

The realignment criterion is another powerful opera-
tional criterion for separability given in [22,23]. It demon-
strates a remarkable ability to detect many BES [22,23]
and even genuinely tripartite entanglement [27]. Re-
cently considerable efforts have been made in proposing
stronger variants and multipartite generalizations for this
criterion [28]. The criterion says that a realigned version
R��� of � should satisfy jjR���jj � 1 for any separable
state �. R��� is simply defined to be R���ij;kl � �ik;jl
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[22,23,27]. The LU invariant property holds also for
jjR���jj [23]. For the pure state of Eq. (3), it is straightfor-
ward to prove

k�TAk � kR���k �
�X

i

������
�i
p

�
2
� �; (4)

as already shown in [19,22,26], where � varies from 1 tom.
Let us also review some important results in [9] which

we will use for the proof of our main Theorem. Terhal and
Vollbrecht gave the first formula for the entanglement of
formation for a class of mixed states in arbitrary dimension
d: the isotropic states

�F �
1� F

d2 � 1
�I � j�
ih�
j� 
 Fj�
ih�
j; (5)

where j�
i �
��������
1=d

p Pd
i�1 jiii and F � h�
j�Fj�
i, sat-

isfying 0 � F � 1, is the fidelity of �F and j�
i. They
found that for F � 1=d, the EOF for isotropic states is
E��F� � co�R�F�� where R�F� is a simple function of F.
Here the symbol ‘‘co’’ means the convex hull, which is the
largest convex function that is bounded above by a given
function. They have also presented an explicit expression
of co�R�F�� for d � 2, 3 and conjectured its general form
for arbitrary d.

With the above analysis and preparation, we can formu-
late the main result of this Letter:

Theorem.—For anym � n �m � n�mixed quantum state
�, the entanglement of formation E��� satisfies

E��� � co�R����; (6)

where

R��� � H2������ 
 �1� �����log2�m� 1�;

���� �
1

m2 �
����
�
p



����������������������������������
�m� 1��m���

p
�2;

(7)

with � � max�k�TAk; kR���k� and H2�:� is the standard
binary entropy function.

Proof.—To obtain the desired lower bound, we assume
that one has already found an optimal decompositionP
ipi�

i for � to achieve the infimum of E���, where �i

are pure state density matrices. Then E��� �
P
ipiE��

i� by
definition. For a pure state density matrix � � j ih j with
j i given by Eq. (3), one has k�TAk � kR���k �
�
Pm
k�1

������
�k
p
�2 � � according to Eq. (4). We would like first

to find a minimal admissible H� ~�� for a given �. This
minimization problem has been solved in [9],

R��� � min
~�

�
H� ~�� j

�Xm
k�1

������
�k
p

�
2
� �

�
:

� H2������ 
 �1� �����log2�m� 1�; (8)

where

���� �
1

m2 �
����
�
p



����������������������������������
�m� 1��m� ��

p
�2: (9)
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The function R��� here is the R�F� used in [9] after sub-
stitutions of d! m, F ! �=m. It is further shown in [9]
that co�R���� is a monotonously increasing, convex func-
tion and satisfies co�R���� � H� ~�� for a given �. Denote
E��� � co�R����, one thus has

E��� �
X
i

piE��i� �
X
i

piH� ~�i� �
X
i

piE��i�

� E

�X
i

pi�
i
�
�

�
E�k�TAk�;
E�kR���k�;

(10)

where we have used the monotonicity and convexity prop-
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erties of E, and convexity of the trace norm k�TAk �P
ipik��

i�TAk and kR���k �
P
ipikR��

i�k. Set � �
max�k�TAk; kR���k�, we arrive at

E��� � E��� � co�R����; (11)

which gives exactly the conclusion of Eq. (6). �
Since co�R���� is the largest convex function that is

nowhere larger than R���, it is optimal to give the best
lower bound according to the relations Eqs. (8), (10), and
(11). From the general form for co�R���� given in [9], the
following relation
E��� �

8><
>:

0; � � 1;
H2������ 
 �1� �����log2�m� 1�; � 2 �1; 4�m�1�

m �;
log2�m�1�
m�2 ���m� 
 log2m; � 2 �4�m�1�

m ;m�;
(12)
holds form � 2, 3. We have strong evidence for its correct-
ness for arbitrary m by verifying directly that the second
derivative for R��� with respect to � goes from positive to
negative value with only one zero point when � varies from
1 to m according to the analysis of [9].

The result of the above Theorem and its general expres-
sion Eq. (12) provide an explicit tight lower bound for the
EOF without the need of any numerical optimization pro-
cedure. In fact, it can be done in an entirely straightforward
manner through the computation of the trace norm of a
certain matrix by standard linear algebra packages. Some
further significant features arising from our general result
are illustrated in several examples and the following
discussions.

Example 1.—Qubit-qudit system.
When m � 2, which corresponds to a qubit-qudit sys-

tem, one derives easily from the Theorem and Eq. (12) that

E��� �
�

0; � � 1;
H2�

1
2 �1


����������������������������
1� ��� 1�2

p
��; � 2 �1; 2�:

(13)

This recovers previous results obtained by the authors in
[19], where � � max�k�TAk; kR���k�, and others in [29],
where � � k�TAk. In addition, Eq. (13) can detect and give
lower bounds of EOF for all entangled states of two qubits
and of qubit-qutrit systems, since the Peres-Horodecki
criterion is necessary and sufficient for separability in these
cases [21]. Furthermore, whenever there is a two qubit state
in which �� 1 is equal to the concurrence defined in [8],
the bound Eq. (13) will give the exact value of EOF. For
example, the 2 � 2 Werner state [11] fits this condition by
direct verification. The bound Eq. (13) will be particularly
useful for the study of entanglement in realistic many-body
physical systems. For example, one usually needs to moni-
tor entanglement dynamics and distribution between a spin
1=2 particle and the remaining parts for a solid state system
or a quantum computing device, and our bound can be
useful in this context.

Example 2.—Isotropic states.
Isotropic states Eq. (5) were first proposed in [24] and
further properties were analyzed in [11]. They arise natu-
rally in some special depolarizing channel [24] and con-
stitute the class of U �U invariant mixed states in d � d
systems. These states have been shown to be separable for
F � 1=d [24]. The EOF E��� for this class of states has
been given in [9] by an elegant extremization procedure. It
is derived in [22,26] that k�TAF k � kR��F�k � dF for F >
1=d. Thus one can directly exploit the above Theorem with
� � dF to see that the bound given in Eqs. (6) and (12)
coincides with the exact value of EOF for the whole class
of states in Eq. (5).

Our Theorem and the general relation of Eq. (12) com-
plement a number of existing approaches to make a quite
good estimate of entanglement for BES, benefiting from
the powerful realignment criterion which enables one to
detect many of the BES [22,23].

The bound can be made even better if it is much easier
to compute a convex-roof extended entanglement
measure [22,30] k�TAkco or kR���kco than the EOF.
The extended measures in our case are defined by
k�TAkco � minfpi;�ig

P
i pik��

i�TAk and kR���kco �

minfpi;�ig
P
i pikR��

i�k, where � �
P
ipi�

i, pi � 0, andP
ipi � 1. They have been studied and calculated for some

special class of states in [22,30]. Defining � �
max�k�TAkco; kR���kco�, one finds that the result of the
Theorem is still valid, since the last inequality in Eq. (10)
holds as E�

P
ipi�

i� � E���. This will provide a tighter
lower bound for the EOF since generally k�TAkco �
k�TAk and kR���kco � kR���k follow from the
definitions.

Because of the nonanalytic behavior of the right-hand
side of Eq. (12), it is difficult to find a specific condition
under which our bound will be exact for a general state.
Roughly, for a 2 � n system one necessary requirement is
that all the �i should be equally entangled with E��i� �
R��� in an optimal decomposition for achieving EOF, as in
this case we demand all the inequalities in Eq. (10) to be
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changed into equalities. In higher dimensions, it is neces-
sary that all the �i should have equal EOF of R��� when
1 � � � 4�m� 1�=m while there should be two values of
EOF, log2m and R�4�m� 1�=m�, for 4�m� 1�=m � � �
m, as seen from Eq. (12).

Although the work [19] permits to furnish a lower bound
for EOF (in fact, there is no explicit formula given there), it
is by no means optimal for general states except for 2 � n
systems. Instead, the procedure in [19] clearly imposes
more restrictions than that of the present work: it requires
first to give a lower bound of concurrence for a given �,
and then obtain a possible lower bound of EOF from the
derived concurrence bound. Thus the result in the present
Letter is optimal as long as the parameter � is involved
only, since we have utilized the largest convex function
co�R���� that is bounded above by R���.

In summary, we have determined a completely analytic
lower bound of EOF for an arbitrary bipartite mixed state,
which characterizes optimally the quantitative behavior of
entanglement through the well-known Peres-Horodecki
criterion and the realignment criterion for separability.
The procedure only involves a simple computation of
matrix eigenvalues and can be done efficiently with the
standard linear algebra packages. Our bound leads to exact
values of EOF for some special quantum states and enables
one to give an easy EOF evaluation for many BES, a task
which was extremely difficult before. We are of the opinion
that the result constitutes a significant bridge over the big
gap between the elegant result of Wootters for 2 qubits, and
the few existing results mentioned before for high dimen-
sional states. In this way our method can yield a powerful
tool for investigating quantitatively the character of entan-
glement for practical laboratory sources (atomic, photonic,
spin, or other carriers), and for the study of many-body
systems. Furthermore, it may provide important insights
into realistic quantum channels and condensed matter sys-
tems, revealing deep connections between entanglement
and macroscopic properties for the corresponding physical
systems.
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