
PRL 95, 208501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 NOVEMBER 2005
Memory in the Occurrence of Earthquakes
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We study the statistics of the recurrence times � between earthquakes above a certain magnitude M in
six (one global and five regional) earthquake catalogs. We find that the distribution of the recurrence times
strongly depends on the previous recurrence time �0, such that small and large recurrence times tend to
cluster in time. This dependence on the past is reflected in both the conditional mean recurrence time and
the conditional mean residual time until the next earthquake, which increase monotonically with �0. As a
consequence, the risk of encountering the next event within a certain time span after the last event depends
significantly on the past, an effect that has to be taken into account in any effective earthquake prognosis.
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Earthquakes, like many other natural hazards, are com-
plex spatiotemporal phenomena, where the underlying
mechanisms are not yet fully understood (for reviews,
see [1–4]). Among the few well established basic laws
are the Omori law [5] and the Gutenberg-Richter law [6].
The Omori law states that after a main earthquake the rate
n�t� of aftershocks above a certain magnitude M decays
with time t as n�t� � aMt�� with � being independent
of M and close to 1. The Gutenberg-Richter law describes
the number N�M� of earthquakes larger than M by
log10N�M� � �bM, where b is close to 1. In addition,
several modified frequency-magnitude (energy moment)
distribution laws have been proposed, among them the
generalized Pareto distribution for extreme earthquakes
[7,8].

Recently, scaling laws for the temporal and spatial var-
iability of the earthquakes have been obtained by Bak et al.
[9] and Corral [10–12] which included various seismic
regions with different tectonic properties. Considering
the various tectonic environments as well as mainshocks
and aftershocks as part of essentially one unique process,
they analyzed the recurrence times between earthquakes
greater thanM in a large number of spatial areas of varying
sizes L� L. Bak et al. [9] concentrated on the distribution
of the recurrence times in California and obtained a unified
scaling law for the spatiotemporal set of data (see also
[13,14]). Corral [10–12] studied the recurrence times in a
large number of spatial areas of various sizes. He found the
remarkable result that independent of the considered area
and independent of the thresholdM, the distributionDM���
of recurrence times scales with the mean recurrence time
��M as

DM��� �
1

��M
f��= ��M�; (1)

where f��� is a universal scaling function which does not
depend onM and can be well approximated by the Gamma
distribution
05=95(20)=208501(4)$23.00 20850
f��� ����1��� exp����=B�; (2)

with � close to 0.6 and � close to 1 [12].
Here we address the question of whether the distribution

DM��� [and thus f���] fully characterizes the sequence of
the return intervals. To this end, we study the conditional
probability DM��j�0� defined as the distribution of those
recurrence times � that immediately follow a recurrence
time �0. In records without memory, DM��j�0� does not
depend on �0 and is identical to DM���. Here we show that
DM��j�0� depends strongly on the previous recurrence
time �0, such that small recurrence times are more likely
to be followed by small ones, and large recurrence times by
large ones. This sequential clustering of earthquakes can be
best observed in related quantities, like the conditional
average of recurrence times �̂M��0� and the mean condi-
tional residual time to the next earthquake following �0,
which both scale with ��M. We show that the memory also
influences significantly the conditional (risk) probability
that after an event aboveM the next event will occur within
time t, given that the previous event occurred time �0

before. Accordingly, the known information about the
past can be used efficiently to improve the risk prognosis
of earthquakes.

In our analysis, we consider six earthquake catalogs [one
global world database Advanced National Seismic System
(ANSS) and five regional catalogs (JUNEC, Kamchatka,
NCSN, New Zealand, and SCEC)], for more details on
these databases, see [15]. In each catalog, we are interested
in the recurrence times � between earthquakes with mag-
nitudes above some threshold value M [see Fig. 1(a)].
Figure 1(b) shows a typical sequence of the recurrence
times for the ANSS catalog for M � 5, whereas Fig. 1(c)
shows the sequence of the recurrence times after shuffling
the original sequence. The horizontal full lines in Figs. 1(b)
and 1(c) represent the median recurrence time. In Fig. 1(b),
one can see pronounced patches of small and large return
times (above and below the median) that are clumped
together. In contrast, in the shuffled magnitude sequence,
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FIG. 2 (color online). Conditional probability distribution
D��j�0� for the recurrence times � between earthquakes above
the thresholds M ’ 2:5; 3; 3:5; 4 that follow a recurrence time �0

either from the first quarter of the recurrence times (dashed blue
lines) or from the last quarter (dotted red lines). The uncondi-
tional probability (solid green lines) is also shown. The results
are for the global (ANSS) database and three regional databases
(Japan University Network Earthquake Catalog, New Zealand
GeoNet Project, and Northern California Seismic Network). To
improve the statistics, we averaged over several threshold values
in the neighborhood of each M, i.e., for M ’ 2:5, we consider
2:3<M< 2:7, etc.

FIG. 1. (a) Sequence of earthquakes with magnitudes M 	 2
for the global catalog of the Advanced National Seismic System.
Three recurrence times for M � 5 are indicated by arrows.
(b) Sequence of the recurrence times f�g for the ANSS database
above and below the median � � 0:2d. (c) Same as (b) but for
shuffled magnitudes. The dotted lines are guides to the eye.
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Fig. 1(c), such patches are almost absent. The patches in
Fig. 1(b) demonstrate qualitatively the occurrence of a
memory effect in the recurrence time sequence, where
large (small) recurrence times tend to follow large (small)
ones. To quantify these memory effects, we study the
conditional distribution function DM��j�0�. For simplicity,
we drop the indexM inDM, ��M and all related quantities in
the following. To obtain a reliable statistics, we do not
determine D��j�0� for a specific value of the precursor
interval �0, but for a range of �0 values. To this end, we
have sorted the full data set of N recurrence times in
increasing order and divided it into four subrecords Q1,
Q2, Q3, and Q4, such that each subrecord contains one
quarter of the total number of recurrence times. Therefore,
the N=4 smallest recurrence times are inQ1, while the N=4
largest times are in Q4. By choosing �0 this way, we
actually keep �0= �� constant for different values of M.
Figure 2 shows ��D��j�0� for �0 in Q1 (dashed lines) and
Q4 (dotted lines) as a function of �= ��, forM close to 2.5, 3,
3.5, and 4 in the global ANSS catalog as well as in the
regional catalogs of Japan, New Zealand, and Northern
California [16]. For comparison, we also show the respec-
tive unconditional distribution functions D��� (solid lines)
[11].

As seen in Fig. 2, D��j�0� depends strongly on the
precursor interval �0 and changes its functional form ac-
cording to �0. For �0 in Q1, the probability of finding �
below (above) �� is enhanced (decreased) compared with
D���, while the opposite occurs for �0 in Q4. It is interest-
ing that the scaling with �= �� is good not only for the
unconditional distributionD��� [11], but also for the condi-
tional probability D��j�0� (provided the statistics are as
good as in Figs. 2). Accordingly, to a good approximation,
D��j�0� can be written in the scaled form D��j�0� �
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�1= ���g��= ��; �0= ���. Because of this scaling, if D��j�0� is
known for one value of M, one can estimate it for other
values of M, in particular, for large M (rare events) which
are difficult to study due to a lack of statistics. Thus,
knowledge of the past, i.e., �0 and the scaling function
g��;�0�, improves the earthquake prognosis.

Closer inspection of Fig. 2 shows that for �= �� < 1, also
the conditional distribution decays by a power law [see
Eq. (2)], but with a history-dependent exponent �. While
for the unconditional distribution � � 0:6 (in agreement
with [12]), � is modified to about 0.25 for �0 from Q1 and
about 0.85 for �0 from Q4 (see Table I).

For further implications of the memory effect, we study
the (conditional) mean recurrence time �̂��0� of those times
that immediately follow a recurrence time �0. By defini-
tion, �̂��0� is the first moment of D��j�0�. From the scaling
of D��j�0� the analogous scaling �̂��0� � ��h��0= ��� fol-
lows. To obtain �̂��0�with reliable statistics, we now divide
the sorted (in increasing order) record of recurrence times
into eight consecutive octaves, each one containing N=8
times. The first octave contains the shortest recurrence
times, and so on. Now �0 represents the eight values of
the mean recurrence time in the eight octaves. Figure 3
shows �̂��0�= �� as a function of �0= ��. Because of the strong
memory in the system, �̂= �� is well below one for �0= �� well
below one, and well above one for �0= �� well above one.
Accordingly, small and large recurrence times are more
likely to be followed by small and large ones, respectively.
Naturally, the effect of memory is more pronounced in the
local catalogs than in the global one, where earthquakes
1-2



TABLE I. Values of the exponent � of the scaling function g��;�0� for the six databases
studied, for �0 (i) from the first quarter of intervals Q1 and (ii) from the last quarter of intervals
Q4. To obtain �, we assume that for a given �0, g has the same scaling form as Eq. (2) (as
suggested by Fig. 2). For the unconditional distribution, the � values are consistent with results
of Corral [11,12].

NZ ANSS Japan Kamchatka NCSN SCEC Average

Q1 0.3 0.5 0.35 0.25 0.1 0.1 0:27� 0:15
Q4 0.8 0.9 0.85 0.95 0.8 0.75 0:84� 0:07

Uncond. 0.6 0.63 0.65 0.7 0.5 0.55 0:61� 0:07
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from different areas are mixed. When the memory is
destroyed by randomly shuffling the recurrence intervals,
we obtain �̂��0�= �� � 1, see Fig. 3, open symbols.

The conditional recurrence time �̂��0� tells us how long
one has to wait, on average, for the next event to come,
provided the two last events were separated by time �0.
However, �̂��0� itself is not a good measure of the actual
risk, since the standard deviation of the conditional recur-
rence times also increases with �0 and is of the same order
of magnitude as �̂��0�. To obtain a better estimation of the
risk, we consider the conditional risk probability P�tj�0�
(which also scales with ��) that following a recurrence time
�0, another event (above the same threshold M) will occur
within time t. Figure 4 shows representative results for
P�tj�0� and M � 4 for �0 in the first and last octave of
the recurrence intervals, for (a) the Northern California and
(b) the New Zealand catalog. The curves reveal significant
differences between the risk probability for small and the
risk probability for large values of �0, which may be of
considerable importance for risk estimation.
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FIG. 3 (color online). Conditional recurrence time �̂��0� be-
tween earthquakes above certain threshold values M specified in
the first panel, as a function of �0= ��. The Kamchatka catalog
only contains earthquakes with M 	 4. As in Fig. 2, averages
were taken over certain intervals around the threshold values to
obtain better statistics. The horizontal lines represent �̂��0�= �� ’
1, when there is no memory in the data. The open symbols are
for the corresponding shuffled sequences of recurrence times.
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Finally, we consider the residual time �̂�xj�0� to the next
event given that the time x has been elapsed since the last
event and the last two events before were separated by the
recurrence time �0. For x � 0, the expected residual time
�̂�x � 0j�0� is identical to �̂��0�. In general, �̂�xj�0� is
related to D��j�0� by

�̂�xj�0� �
Z 1
x
��� x�D��j�0�d�=

Z 1
x
D��j�0�d�: (3)

When the memory is irrelevant, �̂�xj�0� does not depend on
�0 and can be immediately obtained from D���. But since
D��j�0� depends strongly on �0 (see Fig. 2), we expect
large memory effects also in the mean residual time.
Moreover, since D��j�0� deviates from a Poissonian, we
expect that �̂�xj�0� will increase with x [17], see also [12].
To reveal both dependencies in the seismic records, we
focus on two values of x (x � 0 and x � ��=2) and two
ranges of �0 values (‘‘small’’ and ‘‘large’’ values referring
to �0 below and above the median, respectively). We
denote the average of �̂�xj�0� over small �0 by �̂�xj��0 �,
and over large �0 by �̂�xj�
0 �. We compare both quantities
with �̂�x�, where overall �0 values have been averaged.

Figure 5 shows these three residual times for the six
databases considered, for both x � 0 [Fig. 5(a)] and x �
��=2 [Fig. 5(b)]. As expected, for x � ��=2, the mean resid-
ual times to the next event are always larger than for x � 0.
Because of the memory in the seismic activity, �̂�xj��0 � is
significantly below �̂�xj�
0 �. The figure shows that the
memory effect is most pronounced for the regional cata-
logs of Japan as well as for the two regional catalogs of
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FIG. 4 (color online). Conditional probability P�tj�0� that two
earthquakes (above a given threshold M), which are separated by
the time �0, are followed by a third earthquake within time �.
The results are for the New Zealand GeoNet Project and the
Northern California Seismic Network, with M � 4 and �0 being
either in the first (circle) or last (square) octave.
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FIG. 5. Conditional residual times for the six databases con-
sidered, with M ’ 4:0 for Kamchatka and M ’ 2:5 for the other
databases, for (a) x � 0 and (b) x � ��=2. In �̂�xj��0 �= �� and
�̂�xj�
0 �= ��, averages have been performed over all precursor
intervals �0 below (open symbols) and above (solid symbols)
the median. To get a better statistics in (b), averages were taken
over 20 equidistant x values between 0:4 �� and 0:6 ��.
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California. By definition, �̂�0� � ��̂�0j��0 � 
 �̂�0j�


0 ��=2.

This implies that �̂�0j��0 � and �̂�0j�
0 � are symmetrical
above and below �̂�0� � �� as is also seen in Fig. 5(a). In
contrast, due to the memory, this symmetry breaks for x
above 0, since large elapsed times x are less frequent after
short �0. Accordingly, the large �0 values (above the me-
dian) contribute more to the average value of �̂�x�, which
leads to the asymmetry seen in Fig. 5(b).

We would like to note that the memory found here
should be distinguished from the memory occurring in
the nonstationary regime after major earthquakes, where
the rate of the aftershocks decreases in time by the Omori
law. The decreasing rate generates a kind of memory where
also small (large) recurrence intervals follow small (large)
ones. To test if the memory we find is due to these after-
shocks, we analyzed several time regimes in the catalogs
(e.g., 1988–1991 and 1995–1998 in the SCEC catalog)
where major events are absent, and found that the memory
persists also in these regimes. This indicates that the after-
shocks after major earthquakes cannot be the origin of our
findings. However, we cannot exclude the possibility that
the memory is due to other types of aftershocks that might
occur after all scales of events, not only after the major
ones, and are present in the whole catalog. If this is the
case, our findings may be considered as a generalization of
the Omori law.

In summary, we have studied the statistics of the recur-
rence times between earthquakes above certain threshold
values M and observed a strong memory in the occurrence
of these events such that small recurrence times are likely
to be followed by small ones and large recurrence times by
large ones. We have quantified this clustering of earth-
quakes by four quantities: (i) the conditional distribution
function, (ii) the conditional mean recurrence time, (iii) the
conditional risk function, and (iv) the conditional residual
20850
time; all of them differ significantly from the correspond-
ing unconditional quantities. The memory effect may be
particularly useful since (as seen in Fig. 4) it allows us to
take into account the available relevant information from
the past to obtain an improved risk estimation. Similar
memory effects, due to long-term persistence, have been
found recently in climate [18].
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