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Cotransport-Induced Instability of Membrane Voltage in Tip-Growing Cells
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A salient feature of stationary patterns in tip-growing cells is the key role played by the symports and
antiports, membrane proteins that translocate two ionic species at the same time. It is shown that these
cotransporters destabilize generically the membrane voltage if the two translocated ions diffuse differently
and carry a charge of opposite (same) sign for symports (antiports). The orders of magnitude obtained for
the time and length scale are in agreement with experiments. A weakly nonlinear analysis characterizes
the bifurcation.

DOI: 10.1103/PhysRevLett.95.208105 PACS numbers: 87.10.+e, 05.65.+b, 87.16.Uv
FIG. 1. The pump (not drawn) generates a gradient of the
electrochemical potential through the membrane by translocat-
ing continuously one species of ions (gray disk). This stored free
energy is used by the symport, a cotransporter, to transfer a
second species of ion (black disk) or nutrient against its own
gradient if necessary. The stoicheiometry of the drawn symport
is equal to 2: two gray disks for one black disk.
Spatiotemporal pattern formation of the electric mem-
brane potential in cells and tissues emerges from collective
dynamics and activity of membrane ion channels. Action
potential and cardiac excitation spiral waves are paradig-
matic examples of nonstationary pattern formation [1,2].
Stationary patterns of ionic currents are widespread in
fungi, plant cells (algae, for example), protozoa, and in-
sects: Chara corallina, Fucus zygote, and Achlya are the
model cells [3,4]. Such patterns are correlated to cell
polarization, apical growth, morphogenesis, and nutrient
acquisition. The characteristic wavelengths and times vary
from a few millimeters to 10 �m and from 1 h to 1 min,
respectively. These times correspond typically to a mem-
brane protein or an ion diffusive time. Two mechanisms
have been proposed [5]: one based on the electromigration
of membrane proteins [6–10] and the other resulting from
a negative differential conductance characterizing voltage-
gated channels [11–13].

However, the origin of current patterns is still unclear in
tip-growing cells where transcellular currents are mainly
produced by the pump and a cotransporter, a membrane
carrier that translocates two species of ions at the same
time [14,15] (see Fig. 1). Three points of view are proposed
by biologists for tip-growing cells: ionic currents may be a
consequence of cellular growth, a self-organized pattern
coupled to growth, or, alternatively, arise as a self-
organized pattern which precedes cellular growth [16].
The appearance of a lateral branching preceded by an
inward current supports the hypothesis of self-organization
in Achlya [15]. The mechanisms proposed in the literature
cannot explain such patterns [17].

In this Letter, we ask the broader question: How does the
stability of the membrane voltage depend on cotransport-
ers? Only the contribution of channels to membrane volt-
age instability has been investigated in the literature. We
demonstrate here that the voltage along a membrane con-
05=95(20)=208105(4)$23.00 20810
taining cotransporters is linearly unstable on a diffusive
(not electrical) characteristic time. The final pattern is a
stationary modulation of ionic concentrations, membrane
voltage, and transcellular ionic currents. The mechanism is
specific to this kind of carrier since each ionic transporter is
characterized by a positive differential conductance.

Consider two ions 1, 2 of valence numbers zj and con-
centrations Cj, diffusing along a cylindrical cellular mem-
brane of radius r. As in the cable model, the
electrodynamics is governed by a one-dimensional electro-
diffusive equation for each ion,

@tCj �Dj@2
xCj� zj�eDj=kBT�@x�Cj@xV�� �2=r�Jj; (1)

and the capacitive relation for the membrane voltage V,

V � V0 � �Fr=2Cm��z1�C1 � C10� � z2�C2 � C20��; (2)

whereDj is the diffusion coefficient of ion j, V0 the resting
membrane potential (�� 0:1 V), Cm the specific mem-
brane capacitance (�0:01 F m�2), and Cj0 the concentra-
tion of ion j in the resting state. The standard cable model
is recovered simply from (1) and (2) when all ionic diffu-
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FIG. 2. The neutral curve �0�k� is defined by ���0�k�; k� � 0
and has a minimum at �kc;�c�. Above the critical control
parameter �c, the membrane voltage is unstable. Parameters
are n � 2, z1 � 1, z2 � �1, D1 � 10�5 cm2 s�1, D2 �
10�7 cm2 s�1 (common for the three neutral curves), and �1 �
0:1 (solid line), �1 � 0:2 (dashed line), and �1 � 0:3 (dotted
line).
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sion coefficients are identical. In our model, the fluxes Jj
take into account the intracellular chemical reactions as
well as the membrane fluxes through pumps, cotransport-
ers, channels, and uniports. The pump uses chemical en-
ergy [adenosine triphosphate (ATP)] to translocate ions
from one side to the other (the 1-ion in this Letter), gen-
erating an electrochemical potential gradient through the
membrane: for example, H�-ATPase in plant cells.
Consequently, the 1-ion is a cation. Cotransporters use
this stored free molar energy to transfer one 2-ion for n
1-ions in the same (opposite) sense for the symport (anti-
port) carrier (see Fig. 1). In practice, the stoicheiometry n
is equal to either 1 or 2. In tip-growing cells, the 2-ion is
often an essential nutrient for future vegetal metabolism
and consequently, implied in many chemical processes
based on enzymatic binding reactions, metabolism in
Achlya hyphae with the methionine (an amino acid) uptake
or the carbon dioxide supply to chloroplasts for photosyn-
thesis in Chara corallina by HCO�3 entry. Finally, the flux
Jj of each ion j is

J1 � Jpch � nJs; (3)

J2 � 	Js � �C2 � JNL
2 ; (4)

where Jpch is the flux through active pumps and passive
channels translocating the 1-ion, 	Js (nJs� is the flux of
the 2-ion (1-ion) through the cotransporter, and JNL

2 is the
(concentration-dependent) nonlinear part of J2, due to
intracellular chemical processes. The mechanism of the
(linear) voltage instability does not depend on the func-
tional form of JNL

2 . The characteristic kinetic constant �
of nutrient uptake is necessarily positive. The sign 	 is �
for a symport and � for an antiport. In the following,
we consider the case of the symport but the extension to
that of the antiport is straightforward. For simplicity’s sake,
Jpch and Js do not depend on concentrations and vary
linearly with the membrane potential V, characterized by
their positive conductances: Gpch � z1F�@Jpch=@V� and
Gs � z1F�@Js=@V�. Even if a cotransporter is often called
a secondary active carrier, its working is passive. Con-
sequently, the differential conductance of the current
through the cotransporter, �n� z2=z1�Gs is always positive
(positive Onsager coefficient). Then, there is no local
positive feedback provided by protein characteristics. In
the homogeneous resting state, Jj � 0 for each ion: the
molar flux Js0 of the nutrient uptake in the resting state
may be nonzero. Equations (1)–(4) are scaled with dimen-
sionless coordinates for space x0 � x=� and time t0 � t=�
with the cable length characteristic of the pumps
and channels (primes are then dropped for simplicity),
�2 � r�=2Gpch, and the diffusive time � � ~D�2=D1D2,
where � is the bulk ionic conductivity and ~D � �1D1 �
�2D2 is the mean coefficient of diffusion. We set �j �
z2
jCj0=�z

2
1C10 � z2

2C20� equal to 0.5 in all the following.
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The control parameter � is the positive conductance
ratio, � � Gs=Gpch, that controls the ionic membrane
fluxes. The stability of the homogeneous equilibrium state
is analyzed by considering the evolution of fluctuations of
voltage V and ionic concentrations Cj and consequently
the linearized equations of (1)–(4): �H�x; t� � �H0est�ikx,
where k is the wave number of the perturbation and H
refers to V and Cj. Two real solutions for s � s�k� are
determined: Im�s� � 0, Re�s� � ���; k�. The first one is
the well-known fast capacitive relaxation. The second one
yields the growth rate of the instability:

���; k� � �
k4 �

~D
D1
k2�1���n� D1z2

D2z1
��

k2 � 1� �n� z2=z1��
�
�1

D2



� ~D�D2�k

2 � �D1 �D2��1� n��
~D
D1

k2 � 1� �n� z2=z1��
; (5)

where �1 � ��=Gpch�D1 �D2� is dimensionless. Since
the capacitance does not appear in (5), this characteristic
(inverse) time is diffusive. From ���0�k�; k� � 0, the neu-
tral curve�0�k� is determined and has a minimum defining
the critical values of the control parameter�c and the wave
number kc (Fig. 2):

�c �
�D1D2

~D�z2D1=z1 � nD2�

�
2k2

c �
~D
D1
� �1

� ~D
D2
� 1

��
;

�k2
c � k2

0�
2 � k4

0 �
�1

~D
D1D2

�D1 �D2�

� k2
0

� ~D
D1
� �1

� ~D
D2
� 1

��
;

where k2
0 � �n�1�D1 �D2�=�z2D1=z1 � nD2�. The par-

ticular case � � �1 � 0 corresponds to a long-wavelength
instability (kc � 0), and will not be treated here [9].
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FIG. 3. Parameters are the same as in Fig. 2, with additional
� � 0:25, �1 � 0:1, �2 � 0:1, and �3 � 5. (a) The final sta-
tionary pattern is a modulation of the dimensionless membrane
potential �V � V0�=jV0j (solid line) and of the dimensionless
Ohmic part IOhm (dashed line) of the extracellular current. An
hyperpolarized membrane potential �V � V0�=jV0j< 0 corre-
sponds to an outer Ohmic current (electric field) in agreement
with experiments made with the vibrating probe. (b) Tem-
poral evolution of the extracellular current IOhm at the position
x � 12:5. The characteristic time is an ionic diffusive one.
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For �>�c > 0, the growth rate is positive in a finite
range of wave numbers. The limit case of small binding
reactions may help clarify the nature of this instability. For
small but nonzero �1, the homogeneous resting state
is unstable (�> 0) against spatial perturbations if 1�
��n�D1z2=D2z1�< 0. Recalling that 0 � n� z2=z1,
two necessary conditions for instability are D1 >
nD2jz1=z2j and z2=z1 < 0 [18]. The former is generally
verified since binding reactions reduce notably the ef-
fective diffusion of the 2-ion [19]; the latter is fulfilled
for the symports H�=HCO�3 in Chara corallina and
H�-methionine in Achlya. For large control parameter
� and small �1, the wavelength �p of the pattern satis-
fies: �p � 2	�r�D2=2Gs

~D�1=2 � �cable�D2= ~D�1=2, where
�cable is provided by the cable model and may be experi-
mentally measured by two impaled electrodes. An order of
magnitude of �p can thus be evaluated. In Achlya hyphae,
some measurements indicate �cable � 2 mm [20]. On the
basis of measurements of the effective diffusion of the
calcium ion, a reasonable value for the diffusion coefficient
of the 2-ion is D2 � 10�7 cm2=s. We thus expect a char-
acteristic pattern wavelength �p � 100 �m, in agreement
with experiments. The characteristic time �p required to
produce the pattern is of the order of a diffusive time: �p �
�2
p=D2, dominated by the slower ionic diffusion. Using the

previous values, we find �p � 103 s, in agreement with
experiments on Achlya hyphae [3].

Equations (1)–(4) have been solved numerically for a
large range of parameters to confirm the previous results.
For simplicity, the nonlinear flux JNL

2 is given by a trun-
cated expansion in powers of the concentration of the 2-
ion:

JNL
2 � C20

X
j�2;3

�j��C2 � C20�=C20�
j: (6)

This form generalizes the expansion of a Michaelis-
Menten enzyme kinetics term in the limit of large
Michaelis constant: our goal is to take into account at
a phenomenological level some of the complexity due to
the function of the 2-ion. The coefficient �3 must be
positive to ensure nonlinear convergence. The simulation
depends on two additional dimensionless parame-
ters: �2 � �2jV0j�2=�z2FGpchC20�D1 �D2�

2� and �3 �

�3jV0j
2�3=��z2F�2GpchC2

20�D1 �D2�
3�. Generally, the

voltage relaxes to zero on a characteristic capacitive
time, as expected from the cable model. However, for
relevant parameters characterizing a symport, a cellu-
lar pattern of voltage and concentrations appears
after a transient whose duration is of the order of mag-
nitude of the diffusive time �p (Fig. 3). Outer and inner
transcellular currents flow periodically through the mem-
brane. It has been established that the Ohmic part IOhm

of the dimensionless extracellular current normal to the
membrane is given by the following relation: IOhm �
20810
~D�I1=D1 � I2=D2�=GpchjV0j [12]. An outer (inner) ohmic
current corresponds to an hyperpolarized (depolarized)
band in agreement with experiments (Fig. 3). The outer
current has a characteristic M shape, observed in
Chara corallina. Varying the nonlinear parameters, it is
possible to obtain a M shape only for the inner current or
for both.

The stationary bifurcation is further characterized by a
weakly nonlinear analysis performed in the vicinity of the
threshold �kc;�c� [2]. An arbitrarily small expansion pa-
rameter 
 is introduced to separate the fast and slow scales
in the problem. We define the slow independent variables
X � 
x and T � 
2t, and Taylor expand the concentrations
Cj, membrane voltage V, and control parameter � in
powers of 
. The resulting equations are then solved re-
cursively for each power 
i. The solvability condition
(Fredholm alternative) at third order provides the ampli-
tude equation:

�0@TA � ��A� �2
0@

2
XA� gjAj

2A; (7)

where �� � ����c�=�c is the reduced control parame-
ter. The time and length scale �0 and �0 of the pattern’s
slow modulations close to the bifurcation may also be
derived directly from the dispersion relation (5): �c�2

0 �
1
2 �@

2�0=@k
2�c and ��1

0 � �c�@�=@��c [2]. The coeffi-
cient g of the nonlinear term is a complicated function of
the physical parameters. The bifurcation is supercritical
(subcritical) for positive (negative) values of g. In the
5-3
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FIG. 4. The tricritical line g � 0 separates domains in the
reduced parameter space �D2=D1;�3� where the bifurcation is
supercritical (g > 0) and subcritical (g < 0). The fixed parame-
ter values are the same as in Fig. 3.
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idealized case described here, and for typical parameter
values, a tricritical line g � 0 separates the two types of
bifurcation in parameter space (see Fig. 4).

In conclusion, we established that a spatially homoge-
neous membrane voltage is linearly unstable if the cotrans-
porters play a role in the control of the electrophysiological
properties of a cell. The final stationary pattern is a trans-
cellular current bearing various ionic species. As opposed
to many other scenarios leading to spatiotemporal pattern
formation in ionic currents [1,11,12], a negative differen-
tial conductance is not required. A necessary ingredient is
the slow intracellular diffusion of one of the two ions
translocated by the cotransporter. Interestingly, this is often
the case in experiments. This mechanism may explain how
a cell can uptake an essential nutrient at precise locations:
in Achlya, methionine enters at the tip during apical
growth.
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