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Coupled Dynamics of RNA Folding and Nanopore Translocation
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The translocation of structured RNA or DNA molecules through narrow pores necessitates the opening
of all base pairs. Here, we study the interplay between the dynamics of translocation and base pairing
theoretically, using kinetic Monte Carlo simulations and analytical methods. We find that the transient
formation of base pairs that do not occur in the ground state can significantly speed up translocation.
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FIG. 1. Translocation of a structured RNA molecule through a
narrow pore, which allows single but not double strands to pass.
The driving force is an applied voltage, which acts on the
negatively charged backbone of the RNA. An appropriate reac-
tion coordinate is the number of bases m�t� that have reached the
trans side. The dynamics of m�t� is coupled to the dynamics of
the base-pairing patterns Scis�t� and Strans�t� on the cis and trans
sides.
The dynamics of base pairing in DNA and RNA mole-
cules plays an important role in many biological processes
ranging from DNA replication to RNA folding [1]. Often,
the dynamics is coupled to other kinetic processes. For
instance, RNA folds as it is synthesized, while it unfolds
and refolds as it passes through the ribosome during trans-
lation. A series of recent single-molecule experiments [2]
used electric fields to drive RNA and DNA through tiny
pores, which let single but not double strands pass. The
case of unstructured, e.g., homopolymeric molecules, is
particularly well characterized, with many theoretical stud-
ies complementing the experiments [3–5]. In contrast, the
effect of base pairing on translocation [see Fig. 1] is only
beginning to be explored, with a few existing experiments
[6–8] and first steps towards a theoretical description [7,9].
In this Letter, we specifically examine the interplay be-
tween base-pairing and translocation dynamics.

Already homopolymer translocation displays rich dy-
namics. Experimentally, one can obtain the full distribution
p��� of the times � for the translocation of a molecule from
the cis to the trans side of the pore. Hence, the goal of
theoretical descriptions is to determine p��� or its moments
as a function of system parameters such as the chain length
N, the voltage drop across the pore, and temperature. Most
treatments reduce the dynamics to a one-dimensional re-
action coordinate, m, which measures how many bases
have reached the trans side [3,4]. This approach is justified
only when the polymer degrees of freedom equilibrate
rapidly compared to the time scale of translocation. It fails
for long chains, where the internal polymer dynamics and
friction with the solvent limit the translocation speed [5].
However, most experiments so far were performed with
short chains where the friction between the polymer and
the pore dominates the translocation dynamics [2,4]. In a
minimal model for these experiments the index m is in-
creased with a forward rate k� and decreased with a back-
ward rate k�. When expressed in terms of a continuous
reaction coordinate 0< x< N, the drift-diffusion equation
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describes the time evolution of the probability distribution
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for x, where D is an effective diffusion constant and the
drift velocity v is induced by the applied voltage. The ratio
‘ � D=v defines a diffusive length scale, below which the
drift v is negligible compared to the Brownian motion [4].
From (1), one obtains p��� as the probability current into
the absorbing boundary at x � N.

Base-pairing interactions affect the translocation dy-
namics significantly by introducing sequence- and
structure-dependent kinetic barriers [6–8]. Previous theo-
retical work [9] argues that these barriers can be exploited
to measure the secondary structure of an RNA molecule, if
its sequence is already known. However, the interplay of
the translocation and base-pairing dynamics also poses
new physical questions, which will be important for the
design of applications. For instance, one expects two limit-
ing cases for the dynamics: slow translocation, during
which the base-pairing pattern remains equilibrated at al-
most all times and on both sides of the pore, and fast
translocation, where an essentially frozen base-pairing
pattern on the cis side is unzipped as the molecule passes
through the pore. Reference [9] considers only the latter
limit. Here, we are interested in the crossover from the
slow to the fast translocation limit and address the follow-
ing questions: (i) Can the physics of the crossover be
described in simple terms? (ii) What is the nature and
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FIG. 2. Mean translocation time h�i for RNAs with the same
length N � 50, but different structures [we plot h�i in units of
k�1

0 , which is O��s� in typical experiments [2] ]. Symbols
represent simulation data, while dashed lines show the adiabatic
limit (2) and solid lines the expression (3) for the two random
walker model. (a) Crossover from slow to fast translocation at a
fixed bias �U � 0:5kBT. Typical base-pairing rates are kbp 	

1 �s�1 [17], so that typical experiments would fall into the
crossover region. (b) Dependence on the bias at a fixed ratio
k0=kbp � 1.
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size of the effective free energy barriers for translocation?
(iii) How is the distribution p��� affected by the presence
of secondary structure?

Whether an experiment is closer to the slow or the fast
translocation limit can depend on the sequence or structure
of the molecule under study, the bias voltage, and the
friction coefficient between the polymer and the pore.
The latter determines the rate k0 for translocation by a
single (unpaired) base at zero bias, which we use as a
control parameter for the crossover. Microscopically, k0

is determined by the diameter of the pore and its surface
chemistry, both of which are in principle tunable, either by
mutation in the case of protein pores or through the fabri-
cation process in the case of solid-state pores [10,11]. We
will see below that the pore depth is also a relevant pa-
rameter for the questions raised above.

Model.—We focus on the case of RNA, even though our
results apply equally to single-stranded DNA. Since kinetic
barriers slow the translocation of structured RNA, we
expect the description by the reaction coordinate m to be
valid over an even wider regime of lengths N than for
unstructured RNA. However, for structured RNA, the dy-
namics of m�t� is coupled to the dynamics of the RNA
base-pairing patterns Scis�t�, Strans�t� on both sides of the
pore. In our model, illustrated in Fig. 1, only unpaired
bases can enter the pore. We describe the dynamics of
Scis�t� and Strans�t� using Monte Carlo kinetics with three
elementary moves: opening of a pair, closing, or a shift in
the binding partner of a base [12]. We use a single rate kbp

for all moves that are energetically favorable, and the rate
kbpe��G, if the move increases the Gibbs free energy by
�G (all energies are in units of the thermal energy kBT).
While this assumption certainly does not hold on the
microscopic level, we expect that it will not affect the
qualitative features of the dynamics on long time scales.
Indeed, a recent model of force-induced RNA unfolding
[13] has shown a remarkably good agreement with experi-
ment using similar assumptions.

To calculate the Gibbs free energies, we use a simplified
energy model, which allows for CG, AU, and GU base
pairs with a binding energy of 2, 1, and 0, respectively. The
free energy cost for any loop (interior, bulge, multiloop, or
hairpin) of size ‘ is 3� ln�‘�, where � � 0:6 is the Flory
exponent. We exclude hairpin loops of size ‘ < 3, which
cannot occur in RNA structures due to steric constraints.
The applied voltage drops primarily directly across the
pore, leading to an energy gain �U when a monomer
traverses the pore. Thus, the ratio of the forward and
backward rates is given by the Boltzmann factor e�U. We
assume the symmetric choice k� � k0e��U=2 correspond-
ing to a centered transition state along the microscopic
reaction pathway for translocation by one monomer. We
denote by h the number of bases that fit inside the pore and
assume these cannot base pair at all. While translocation
consists of an entrance stage followed by a passage stage,
we focus only on the passage dynamics. Hence, we choose
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m�0� � 0 as the initial condition and stop the simulation
when m��� � N, whereas we do not allow the RNA to exit
on the cis side.

Mean translocation times.—To explore the effect of
base pairing on the translocation dynamics, we use three
different sequences with identical length N � 50; one
well-defined structure (a hairpin with 23 random base pairs
and a loop of 4 bases), one random sequence, and an
unstructured homopolymer for comparison. Figure 2
shows their mean translocation times h�i for different
combinations of the parameters k0, kbp, and �U (here we
have used an idealized pore with h � 1). The average is
taken over 1000 independent simulations, and h�i is plotted
in units of the ‘‘hopping time’’ k�1

0 for an unpaired base
across the pore at zero bias.

Figure 2(a) displays the transition from the slow to the
fast translocation limit by varying the ratio of the two
characteristic time scales in our model, k0=kbp, at constant
bias �U � 0:5. For the homopolymer, the base-pairing
time scale is irrelevant and hence k0h�i is constant. For
the structured RNAs, the curves also approach a constant
limit at small k0=kbp, indicating that translocation is suffi-
ciently slow to allow equilibration of the base-pairing
pattern whenever the RNA translocates by a base. Note
that this limit value of k0h�i depends strongly on the
sequence or structure of the RNA. In the other extreme,
k0 � kbp, the base-pair opening in front of the pore is the
rate limiting process. The crossover between these limits
occurs at k0 	 kbp. We will now seek a quantitative under-
standing of these simulation results.

Slow translocation limit.—In the limit k0 
 kbp, the
translocation dynamics m�t� becomes independent of the
base-pairing kinetics. The effect of base pairing then
4-2
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FIG. 3. Translocation time distributions for (a) the RNA hair-
pin and (b) the random sequence at �U � 0:5 and k0 � kbp. The
histograms show simulation data, whereas the solid line in (a) is
an exponential fit and in (b) is a fit to the drift-diffusion form [4].
The insets show the free energy landscapes F 1�m� of the
adiabatic limit (2); see main text for details.
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amounts to reducing the translocation rates k�, k� by
factors equal to the probability that the base entering the
pore is unpaired. Such equilibrium properties of the base-
pairing interaction can be expressed through the partition
function Zi;j, the total statistical weight of all secondary
structures for the substrand from base i to base j of the
RNA sequence. For instance, the probability for the jth
base on the trans side to be unbound is Z1;j�1=Z1;j.
Hence, the translocation dynamics m�t� becomes a 1D
random walk with site-dependent hopping rates k��m� �
k�Z1;m�1=Z1;m and k��m� � k�Zm�h�2;N=Zm�h�1;N .
Using the mean first passage time formalism [14], we
then find the mean translocation time

h�i �
1

k�

XN�1

j�m�0�

Xj
k�0

eF h�1�j��F h�k���j�k��U; (2)

where F h�m� � � ln�Z1;mZm�h�1;N=Z1;N� is the free en-
ergy cost of placing a free RNA from solution into position
m of a pore with depth h. We obtain the partition functions
Zi;j by generalizing the well-known recursion relations of
[15] to a logarithmic multiloop cost [16], in order to derive
the exact adiabatic limit of our model.

In Fig. 2(a), the dashed lines show that our kinetic
simulations indeed converge to the adiabatic limit (2) for
small k0=kbp. However, besides providing a check on our
simulations, Eq. (2) also helps one to understand the nature
of the relevant free energy barriers. For example, the hair-
pin structure has a total binding free energy of � 33kBT.
Yet, its translocation time compared to that of the homo-
polymer is not more than 1000 times longer (at �U �
0:5kBT and k0 < kbp). The applied voltage lowers the free
energy barrier only about 10kBT and does not suffice to
explain the comparatively small effect of the stable struc-
ture on the translocation time. Inspection of the free energy
landscape F 1�m� of the hairpin, shown in the inset of
Fig. 3(a), reveals that the formation of non-native base
pairs on both sides of the pore lowers F 1�m� considerably
in the central part and explains the effect (for comparison,
the landscape for only the native hairpin structure is shown
with a dashed line). Hence, the major barrier for the trans-
location of structured molecules is not unfolding of the
complete structure, but partial unfolding of the structure
until the formation of non-native base pairs speeds up
translocation.

Crossover to fast translocation.—In Fig. 2(a), the cross-
over between slow and fast transition occurs in the range
0:1< k0=kbp < 10 for both structured RNA sequences.
Incidentally, typical experimental values for the base-
pairing and translocation rates are comparable with kbp 	

k0 	 1 �s�1 [2,17]. Hence it is important to characterize
the translocation behavior in the transition region.

Note that while the higher stability of the hairpin yields a
longer translocation time, the shape of the prominent bend
in the curves of Fig. 2(a) is independent of the sequence as
long as it is structured. This observation encourages us to
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develop a simplistic model: The dominant effect giving
rise to the prominent bend is a kinetic competition between
the opening and closing dynamics of the base pair next to
the cis side of the pore, and the position of the pore with
respect to the RNA, which is driven into the structure by
the external bias. This process resembles two impenetrable
random walkers biased to run into each other. Walker P
representing the pore has a hopping rate k� towards walker
R representing the RNA and a rate k� away fromR. Walker
R, in turn, moves towards P at the rate kbp for base-pair
closing, and away at an unbinding rate ku that is reduced by
the stability of the base pair. If none of these rates depends
on the positions of R and P, one finds that the center of
mass position of the walkers drifts with a velocity v �
�kuk� � kbpk��=�kbp � k��. Assuming this drift domi-
nates over diffusion, h�i takes the simple form

h�i � N=v �
N
k0

�
a� b

k0

kbp

�
(3)

with dimensionless constants a and b. The solid lines in
Fig. 2(a) show Eq. (3), where we determined a from the
slow translocation limit (2) and used b as the fitting pa-
rameter. The agreement with the simulation data suggests
that the shape of the curves is indeed largely determined by
a kinetic competition between translocation and the local
base-pairing dynamics in the vicinity of the pore. The
effects of large-scale rearrangements in the base-pairing
pattern during translocation are too subtle to be discernible
in Fig. 2(a). However, reformation of base pairs on the
trans side, which we have ignored to obtain Eq. (3),
strongly influences the parameter b.

Voltage dependence.—In Fig. 2(b) the mean transloca-
tion time of our three test sequences is plotted against the
bias �U, where symbols represent simulation data at kbp �

k0 and dashed lines the adiabatic limit (2). For the homo-
polymer, the adiabatic limit is exact and displays the well-
known crossover from a diffusion-dominated h�i 	 N2=k0

at �U
 1=N to a drift-dominated h�i 	 N=k� at �U�
4-3
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1=N. For the structured RNAs, the mean translocation time
also levels off at �U	 1=N, since the molecule ‘‘feels’’
the bias only if its total free energy differs by at least one
kBT between the two sides of the pore. In this case, how-
ever, the simulation data lie somewhat above the adiabatic
limit (2), consistent with the fact that kbp � k0 is within the
crossover regime of Fig. 2(a). Clearly, as we leave the
adiabatic limit, the effective kinetic barriers for transloca-
tion increase and (2) gives only a lower bound on the mean
translocation time. As �U is increased to 	kBT (right
edge of the plot), the system is more strongly perturbed
and the deviation from the adiabatic limit becomes more
significant.

Translocation time distributions.—In Fig. 2(b), the
translocation dynamics of the homopolymer is drift domi-
nated for �U > 1=N. Is this equally true for the trans-
location dynamics of the structured RNAs? To address this
question, we examine the full distribution p���, which
displays more detailed signatures of the translocation dy-
namics than the average h�i and is routinely measured
experimentally. The histograms in Figs. 3(a) and 3(b)
show p��� for (a) the hairpin and (b) the random sequence,
from simulations at k0 � kbp and �U � 0:5� 1=N. We
observe that the distributions are markedly different: For
the hairpin, p��� follows an exponential law (solid line)
characteristic for thermally activated crossing of a single
free energy barrier. In contrast, p��� for the random se-
quence has the shape characteristic for the drift-diffusion
process (1), which is appropriate for unstructured polymers
[the solid line in Fig. 3(b) is a fit with the associated mean
first passage time distribution [4] ].

Indeed, the free energy landscape F 1�m� of the random
sequence is remarkably flat [see inset of Fig. 3(b)]. This is
due to the fact that the random sequence can accommodate
many dissimilar structures with similar free energies: when
the pore breaks up part of the structure of the random
sequence, a (non-native) structure can reform on the trans
side, which is almost equally stable. Hence, the transloca-
tion dynamics of the random sequence is qualitatively
similar to that of the homopolymer, only with a reduced
diffusion coefficient D and drift velocity v due to the
roughness of the free energy landscape.

Conclusions.—Compared to the thermodynamics, the
dynamics of base pairing is far less understood. Trans-
location experiments are emerging as a valuable tool to
probe these dynamics on the single-molecule level. Here,
we have studied the interplay between translocation and
base pairing within a simplified but explicit theoretical
model. In the slow translocation limit, the translocation
dynamics of our model can be understood analytically,
which is useful to interpret our simulations even outside
the slow translocation regime. We find that the formation
of non-native base pairs can significantly speed up trans-
location, rendering the effective kinetic barriers much
smaller than might be naively expected. Furthermore, we
20810
showed that the crossover between slow and fast trans-
location can be described by a simple phenomenological
model. In the future, nanopores might be used to sort RNAs
according to their structures.
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