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Ground State Projection of Quantum Spin Systems in the Valence-Bond Basis
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A Monte Carlo method for quantum spin systems is formulated in the valence-bond basis. The
nonorthogonality allows for an efficient importance-sampled projection of the ground state out of an
arbitrary state. The method provides access to resonating valence-bond physics, enables a direct estimator
for the singlet-triplet gap, and extends the class of models that can be studied without negative-sign
problems. As a demonstration, the valence-bond distribution in the ground state of the 2D Heisenberg
antiferromagnet is calculated. Generalizations of the method to fermion systems are also discussed.
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Quantum spin systems play a prominent role in current
condensed matter research. Although much progress has
been made in recent years, there are still formidable chal-
lenges remaining in exploring the plethora of possible
ground states and excitations [1]. Gaining deeper under-
standing of quantum spin physics is not only important in
the context of particular magnetic systems, but it could also
give insights of broader relevance to correlated quantum
matter, e.g., concerning quantum phase transitions [2,3].

Spin models such as the Heisenberg Hamiltonian, with
interactions J;;S; - S;, can be studied by a wide range of
methods. Numerical finite-lattice calculations can, in prin-
ciple, deliver results free of approximations, but, in prac-
tice, available computational methods are restricted to
certain classes of models. For instance, density matrix
renormalization [4] is essentially limited to one dimension
and quantum Monte Carlo (QMC) techniques [5,6] can be
used on a large scale only when the interactions are non-
frustrated. Even then, there are still often challenges in
going to a lattice sufficiently large for reliable extrapola-
tion to the infinite lattice. Developing more general and
efficient computational methods, for frustrated as well as
nonfrustrated systems, therefore continues to be an impor-
tant field of research.

In this Letter, a QMC method for S = 1/2 Heisenberg
models is presented which offers several advantages rela-
tive to state of the art ground state simulations (taking
T — 0 in world-line [5] or stochastic series expansion
(SSE) [6] QMC with loop-cluster updates). The method
is formulated in an overcomplete and nonorthogonal basis,
which in the simplest case is the valence-bond (VB) basis,
in which pairs of spins form singlets [7-10]. Any singlet
state can be expanded in this basis, and the ground state can
be projected out of an arbitrary VB state by applying a high
power of the Hamiltonian H. Such a scheme was used by
Liang [11], who started from a good trial wave function
| W) and improved it by sampling [12] terms of (—H)"| W),
with a final extrapolation n — 0. Santoro et al. used the
VB basis in a Green’s function method [13]. There has
been no follow-up on these pioneering works—the full
potential of QMC in the VB basis has apparently not been
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realized. Here it will be shown how the nonorthogonality
enables a fast importance-sampled projection without var-
iational states or extrapolations. Triplet states can also be
studied, and unpaired spins (spinons) can be introduced as
well. There is, thus, direct access to degrees of freedom
that are normally not available with QMC calculations but
are of great theoretical interest. The valence bonds and
spinons are the actors in resonating valence-bond physics
[9], which is often used as a starting point for simplified
quantum-dimer models [14] and field theories [2,3,15].
The method should, thus, facilitate closer contact with
modern analytical treatments. Moreover, the method ex-
tends the range of models that can be studied without
negative-sign problems.

Projection of a singlet state is here considered first, and
then the scheme is extended to a triplet. As an illustration
of results that can be obtained, the distribution of VB
lengths in the ground state of the 2D Heisenberg model
is presented. Finally, generalizations to a wider range of
models in other related overcomplete bases are discussed.

The expansion in terms of VB states of a singlet ground
state of N spins (N /2 valence bonds) is written as

10) = ;fklw’f’ bh) -+ (a1 b)) = gfklskx (1)

where (a%, b¥) denotes two spins paired up in a singlet,

(a,b) = (Tl — LT /2, )

i.e., a valence bond, and k labels all bond tilings of the
lattice (allowing arbitrary bond lengths). The notation |S,)
has been introduced for convenience. The expansion can
always be made positive definite; any negative f; can be
made positive by switching the indices of one singlet.

Since the VB basis is overcomplete, the expansion co-
efficients are not unique, in general. However, the expan-
sion of any state | W) written in the VB basis of course has a
unique expansion in energy eigenstates |n);

0) = Sl = S ealn. 3)
k n

Therefore, acting on this state with a high power (n — o)
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of the Hamiltonian projects out the ground state:

[—(H = OF¥) = > guilS) — colEg — CI"10). (4)
k

A constant C has been subtracted to ensure that the ground
state energy is the largest in magnitude. QMC methods
based on (4) in the standard basis of eigenstates of all S} are
commonly used [16,17], although for bipartite systems
they tend to be less efficient than low-temperature simula-
tions with advanced finite-7 methods [5,6]. However, for
frustrated systems [17] and #-J models [18], where there
are sign problems (nonpositive-definite g, , and analogous
mixed signs in other methods) projector methods are supe-
rior if a good trial state |'¥) can be used.

The first observation underlying the projector method in
the VB basis is that the application of a Heisenberg inter-
action operator on a VB state leads to a very simple
rearrangement of valence bonds [8,11]. Consider the
Heisenberg Hamiltonian, on any lattice, written as

H==>J;H, 1

@

Acting with H,, on a VB state in which sites a and b
belong to the same valence bond gives an eigenvalue of
unity; H,p|...(a, b)...)=1...(a, b)...). Acting on sites
belonging to different valence bonds gives a new basis
state;

Hyl...(a,b)...(cd)..)=1]... (c,b)..). (6)

This bond flip is illustrated in Fig. 1. Here the sign is
always positive when the indices are in the order indicated.
This implies that a positive-definite representation of the
projection (—H)"|' W) can be achieved for a bipartite lattice,
by defining (a, b) so that a is on sublattice A and b on
sublattice B, as illustrated with arrows in Fig. 2. The
convention also implies a positive-definite (1) [10].

For a nonfrustrated interaction, one can show that the
projected ground state (4) contains only bonds connecting
spins on different sublattices (bipartite bonds). Consider
the VB configuration shown to the left in Fig. 1(b). With
sites a, ¢ in sublattice A and b, d in B, both the bonds are
nonbipartite. When the operator has acted, the new bonds
are bipartite. With a bipartite interaction, one cannot ac-
complish the reverse process (note that the Hamiltonian is
not manifestly Hermitian in the VB basis), and, thus, if the
trial state |'¥) contains nonbipartite bonds, they will vanish

(a,d)...

(a)o/_\. o/_\o Moe

(®) /?f\ /\.

FIG. 1. Action of a bond operator on two VB states.

after H has acted a number of times and cannot reappear.
The ground state, hence, must contain only bipartite bonds.

For a frustrated interaction, nonbipartite bonds are gen-
erated and the flip (6) can lead to a minus sign [19]. It may
also, in practice, not be possible to find a convention which
renders all the expansion coefficients in (1) positive. The
projection scheme still also works, in principle, for frus-
trated systems, as long as any negative signs are taken into
account in the standard way [20].

With the Hamiltonian (5), C = 0 can be used in (4). To
expand H", an index sequence P, = [a;, b,],...,[a,, b,]
is used to refer to an operator product [ | oHab, One of the
VB basis states can be chosen as the trial state; [ V) = [S;)
[21]. The projected state is then

(~HYIs) =3 n Jupy oy |50 = SWPIS(P)

7117

)

where |S(P,)) denotes the (normalized) state obtained
when the operators have acted on |S;) and W(P,) =
]_[pwap,,p. The factors w,;, are %Ju,, or J,, for operations
with H,;, that cause bond flips and are diagonal, respec-
tively, in the course of propagating the state from |S,) to
|S(P,)). Note that no operator H,,, can destroy the state in
(7), i.e., all W(P,,) # 0. This will be taken advantage of in
constructing an importance-sampling scheme that would
not be possible in the z basis, where there are enormous
constraints on the operator products.

To calculate the ground state energy, the overlap with an
arbitrary reference state |R) can be taken;

£ — (RIH|0) _ >p, W(P,XRIHIS(P,)) ®
ORIy X, WPRIS(P,)

One can always choose a state with equal overlap with all
basis states, and, hence, all (R|S) overlaps cancel. If P,, is
sampled with probability o« |W(P,)|, the energy is

ZJU< < 1 1 - nij)qij>>’ )

(l »

where n;; = 1(0) if there is (is not) a bond connecting sites
i and j in |S(P,)). For a frustrated system, s = *1 is the
product of phase factors *1 arising when propagating |S,)
to |S(P,)) with the string P,, and ¢;; = *1 arises when H;;

- -
P e

FIG. 2 (color online). Singlet convention for a system with
sublattices A and B. The arrows indicate the order of the spins in
the singlets, e.g., ¢ — b means (¢, b) = (1.1, — 1.1,)/~/2.
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is applied once more. For a bipartite system, s = ¢;; = 1
and, thus, E, = —%ZijJij(nij + 1).

An expectation value (A) = (0|A|0)/{0]0) of an arbitrary
operator can be written in terms of two projected states,
obtained from the same trial state |S,) propagated with two

different operator strings P,, and Q,;

ZP,, ZQ,, W(Pn)W(Qn)<S(Qn)|S(Pn)> '

The weight function to be used in importance sampling is
thus W(P,)W(0Q,){5(0,)IS(P,)), and the operator estima-
tor is (S(Q,)|AIS(P,))/(S(Q,)IS(P,)).

For a bipartite system, the overlap of two VB states is
determined by the loops formed when the bonds are super-
imposed [22], as illustrated in Fig. 3 (with frustration, a
sign has to be determined as well). Matrix elements
(8418; - S;|Ss) are also easily obtained from these loops;
(841S; - S;1S45)/(S,|Sg) = £3/4 if sites i and j belong to
the same loop (+ and — for i, j on the same and different
sublattices, respectively, in the case of a bipartite lattice),
and 0O otherwise.

A remarkable aspect of the VB basis is that Egs. (8) and
(10) can be efficiently sampled in an almost trivial way, in
steps where a few (r) of the operators in the product P, are
changed at random. Naively, one might expect that the
acceptance rate should become very low for large expan-
sion order n, but this turns out not to be the case. With r =
4, the acceptance rate in the case of the 2D Heisenberg
model is = 40%, almost independently of »n and the lattice
size. The new weight can be computed by performing the
full propagation of the state |S,) with the updated prod-
uct(s) in (7) [and calculating the new overlap in the case of
(10)]. Recalculating the full weight, instead of just a ratio,
may seem like an inefficient proposition. However, if n has
to be increased with the system size as N in order to
converge to the ground state, N?¢ operations [N'*¢ if
a <1 in the case of (10)] are needed to update the full
operator sequence (attempting n/r updates of r operators is
defined as one sweep; several measurements are carried out
during each sweep). In T — 0 calculations with finite-T
methods [5,6], the scaling is N'*¢" if T o N~ Hence, if
a, @' = 1 the scaling is very similar. The gap to the lowest
singlet excitation dictates «, and, hence, in many cases
a <1 suffices. An even faster sampling could likely be

J
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FIG. 3 (color online). Two VB states in two dimensions and
their overlap in terms of loops formed by superimposing the two
bond configurations. In this case, there are N, = 8 valence
bonds and N; = 3 loops, and (S,[Sg) = 2M~N = 1/32 [22].

achieved by using a linked operator list [6]; such an im-
provement will be left for future work.

In order to study a triplet state, consider a triplet bond;
[a, bly = (T.l, + 1.T,)/~/2. The eigenvalue of H,;, operat-
ing on [a, b]y is 0. If H,,,. is applied to [a, b]y(c, d), the
reconfiguration of the bonds is exactly as in (6); the new
state is [a, d]o(c, b)/2. Hence, if there is no diagonal
operation on the triplet, the triplet bond (if there is only
one) behaves exactly as a singlet, and the only change in
the scheme is in the operator estimators. This enables an
improved estimator for, e.g., the singlet-triplet gap:
Carrying out the simulation with only singlets, one of the
bonds can be flagged as a triplet at the measurement stage.
The E; estimator can be averaged over all N/2 initial
triplet choices, with contributions coming only from sur-
viving configurations, i.e., those for which there are no
diagonal operations on the triplet (the survival ratio de-
pends on 7). This does not change the scaling N> of the
simulation and can vastly improve the estimate of the gap
compared to E; — E, obtained from two independent
simulations (the improvement is due largely to partial
cancellation of correlated statistical errors in E, and E)).
For example, for the 2D Heisenberg model with N = 64 X
64, a projection with n = 15N and 10° updating sweeps
gave Ey/N = 0.669449(2) and the finite-size gap E; —
E, = 0.0041(2), corresponding to an accuracy gain of
60 times for the gap, or a CPU-time reduction of 7000.
The energy agrees with that obtained using the SSE
method [6]; E,/N = 0.669450(1), confirming the un-
biased nature of both calculations.

It is important to verify that the method works for
frustrated interactions as well, although the basic formula-
tion discussed here [19] is not likely to be practically useful
for large frustrated lattices. The method should, however,
be applicable to models with local sign problems, e.g.,
lattices with frustrated impurities. Checks against exact
diagonalization results confirm that the scheme indeed
works. For a 4 X 4 system with nearest- and next-nearest-
neighbor interactions J; and J,, at J,/J; = 0.1 a ground
state energy E,/N = 0.65986(4) was obtained using
n = 3N and |S;) a columnar dimer state (5 X 10° updating
sweeps), which matches well the exact E,/N = 0.659 817.
The average sign in this case is (s) =~ 0.074.

As an application of the method, the VB length distri-
bution in the ground state of the 2D Heisenberg model is
presented next. Liang, Doucot, and Anderson [10] studied
variational wave functions with VB state amplitudes f; =
[1:4(a%, b%) in Eq. (1). For h o« 1/rP, where r is the bond
length, they concluded that there is long-range Néel order
for p < 5. The best variational energy was obtained with
p = 4, but the dependence on p for 2 = p = 5 was quite
weak. The bond amplitude A(x, y) does not correspond
exactly to the probability P(x,y) o 3, fink, [where nk,
is the number of length-(x, y) bonds in VB state k], but
simulations of the type used in Ref. [10] confirm that, if
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FIG. 4 (color online). The bond-length probability for bonds
along the line (x,0) in the 2D Heisenberg ground state wave
function.

h(r) o 1/rP, then also P(r) « 1/r”. Note also that P(x, y)
is not a ground state expectation value but a property of the
wave function coefficients [but (0[n,,|0) turns out to be
almost identical to P(x, y)]. A potential worry is that, since
the VB basis is overcomplete, the bond distribution is not
unique. However, the way the projection is done corre-
sponds to a uniform averaging over all possible VB ground
state wave functions; P(x, y) defined this way clearly has a
well-defined meaning.

Calculations were carried out on periodic L X L lattices
with L = 64 and 128, with n up to 15N and 20N, respec-
tively (convergence was checked). The results shown in
Fig. 4 suggest that P(r) ~ 1/r> (there is no notable angular
dependence). It would be interesting to understand this
result from an analytical starting point and also to study
the probability distribution for a quantum-critical system,
e.g., the Heisenberg bilayer [23].

The VB projector scheme opens up a range of interesting
avenues to be explored. The VB (+triplets) basis is formed
out of the 2-site eigenstates of S; - S; and, hence, is par-
ticularly suitable for Heisenberg models. The method can
also be extended, without sign problems, to higher-order
(nonfrustrating) interactions of the form —(S; - S i %) X
(S - S; — 7). This interaction has a sign problem in the z
basis, and, hence, the present method solves a class of sign
problems. Although there are sign problems for frustrated
systems in general, the VB basis opens opportunities to
explore cancellation schemes based on overcompleteness
[19]. Good sign-problem-free approximations could also
perhaps be developed.

It is possible to generalize the VB basis to other Hilbert
spaces, with different types of bonds corresponding to
eigenstates of the Hamiltonian on two sites (or even >2
sites, although the complexity of the approach then in-
creases considerably). Such schemes for #-J and Hubbard
models will be investigated. Although there will clearly be
sign problems for fermions, a generalized bond-state basis
also offers opportunities for new variational wave func-
tions, which could be further refined with the projector

method. Access to the VB (and generalized) degrees of
freedom also enables construction of interesting Hamil-
tonians acting on bonds. Such studies could clarify the
relationships between quantum-dimer [14] and spin mod-
els. Studying the properties (such as the length distribu-
tion) of a triplet bond in the “singlet soup™ of a gapped or
critical system gives information pertaining to the nature of
the spinon bound state (magnon) or spinon doconfinement.
This should be very useful, e.g., in studies of deconfined
quantum criticality [3,15].
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