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The low-temperature stable states and the magnetization reversal of realistic two-dimensional nano-
arrays with higher-order magnetostatic interactions are studied theoretically. For a general calculus of the
multipole-multipole interaction energy we introduce a Hamiltonian in spherical coordinates into the
Monte Carlo scheme. We demonstrate that higher-order interactions considerably change the dipolar
ground states of in-plane magnetized arrays favoring collinear configurations. The multipolar interactions
lead to enhancement or decrease of the coercivity in arrays with in-plane or out-of-plane magnetization.
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Magnetic properties of artificially structured and self-
organized magnetic media belong to the central questions
of nanomagnetism as they give access to new phenomena
that can be used in technology [1–3]. Magnetic memory
applications require the increase of the density of dots per
unit area, which is correlated with a decrease of dot di-
ameter d and interdot distances R. Particles with lateral
size smaller than the characteristic exchange length d <
�ex have a single domain magnetization configuration with
a macroscopic magnetic moment. In densely packed sys-
tems these moments interact. The magnetostatic inter-
action is a crucial parameter as it determines the magneti-
zation reversal. To identify the effects of the long-range
interaction on magnetic behavior extensive experimental
[2,4–9] and theoretical [10–12] studies of magnetic nano-
arrays have been performed.

Experimental investigations show that in comparison
with an infinite film, the interparticle interactions usually
lead to a decrease of the switching field in patterned media
with out-of-plane magnetization [2,5,7] and to an increase
of the coercivity for in-plane magnetized particles
[5,6,8,13]. Although in some cases an agreement of switch-
ing behavior with theoretical predictions has been ob-
tained, it is often found that measured switching fields
deviate significantly (10%–15%) from those expected
from pure dipolar interactions ([5–7,9] and the references
therein). The theory predicts a noncollinear antiferromag-
netic ground state and weak coercivity for a square lattice,
which comes close to the ideal situation of in-plane dipoles
with zero in-plane self-coercivity [14,15], while experi-
ments [6,13] reveal that patterning of a continuous film
increases the coercivity considerably, e.g.,�0Hc goes from
almost zero up to 22.8 mT for Co and 16 mT for NiFe
arrays [6,13]. In addition, collinear magnetic superdomains
in dense nanoarrays have been observed [16] instead of a
noncollinear structure. In a triangular in-plane array a
frustrated ferromagnetic state with closed loops and spirals
has been predicted [11]. In the experiment, however, the
vorticity was not observed and the coercivity exceeded that
expected from the dipolar approximation [6,13]. A related
nonsolved problem is the so-called superferromagnetism in
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two-dimensional nanoislands assemblies. Experimentally
found superferromagnetic domains [9,17] lead to high
coercivity, which is inconsistent with the strength of the
dipolar coupling and the absence of the direct exchange
interactions [9].

The quantitative disagreement between theory and ex-
periment has been attributed to a variety of reasons as
pinning of magnetization by structural inhomogenei-
ties [6] or noncoherent rotation of magnetization [5,7].
Several investigations have been devoted to the question
of how the dipolar interaction between the monodomain
particles is modified by their finite size, i.e., the leading
correction terms to the dipolar interaction have been de-
termined [10,12]. The main conclusion is that the correc-
tion term reinforces the antiferromagnetic character of the
ground state in a square and the ferromagnetic one in a
triangular lattice. An increase in coercivity of the in-plane
systems still cannot be quantitatively explained in the
framework of those studies.

Recently, we have calculated explicitly the multipolar
(MP) magnetic moments of uniformly and nonuniformly
(e.g., onion state) magnetized objects of different sym-
metry [18,19]. It has been demonstrated that rotationally
symmetric particles possess octopolar (Q3) and dotria-
contapolar (Q5) moments, which can be comparable with
the dipolar one (Q1) for elongated (e.g., nanowires) or
ultrathin (e.g., nanodiscs) geometry. The calculation of
interaction energies between a pair of particles with multi-
pole moments show, in agreement with [10,12], that the
higher-order interactions reinforce the dipolar ones.
However, in many-body systems the situation is much
more complicated. As it is known from chemistry [20–
22] the multipolar interactions may completely change
the structure and physical properties of an ensemble.
Hence, to make a reliable conclusion about the influ-
ence of multipolar interactions on switching behavior sta-
ble low-temperature multipolar states have to be calcu-
lated. So far, multipolar configurations in magnetic
nanoarrays have not been considered despite the small
interparticle distances and strong MP moments of the
dots or grains.
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Few existing calculations of stable MP configurations in
physical systems (mainly gas adsorbates) have been usu-
ally made within the mean field or Monte Carlo (MC)
approach in Cartesian coordinates [22,23]. We use spheri-
cal coordinates, as this allows a much easier treatment of
higher-order moments and their interaction energies [see
Eq. (1) below]. For example, the dotriacontapole has com-
ponents Q5m with �5 � m � 5 in spherical coordinates
while it would be a tensor of the form Dijklm with
�i; j; k; l; m� 2 fx; y; zg in Cartesian coordinates. Even
though the number of independent tensor components is
the same, it is a formidable task to calculate all components
of Dijklm or even higher-order moments. Therefore, the
technique, well established in chemical physics, of spheri-
cal coordinates is used to calculate the Coulomb interac-
tion energy between two nonintersecting charge
distributions [21,24]. A nanoarray is nothing but an en-
semble of magnetic multipolar rotators on a lattice and can
be described by the extension of this approach onto a
many-body MP system.

In this study we introduce the Hamiltonian in spherical
coordinates into the conventional MC scheme and derive
the stable low-temperature configurations of magnetization
20720
as well as hysteretic properties of magnetic nanoarrays. It
will be demonstrated that for in-plane systems multipolar
interactions select collinear configurations from the dipolar
manifold. In patterned media with combined dipolar and
octopolar moments a competition between dipole-octopole
and dipole-dipole plus octopole-octopole interactions leads
to the increase of the coercivity. In out-of-plane systems
the higher-order interactions do not change zero-field con-
figurations. However, the multipolar contributions enlarge
the interaction field by 10%–15% and, thus, decrease the
switching field.

The Hamiltonian of the interaction reads

H �
1

4��0

X
A�B

lAlBmAmB

TlAlBmAmB
� ~RAB�Q

A
lAmA

QB
lBmB

�
X
A

1���
2
p Hx�Q

A
11 �Q

A
1�1�; (1)

where QA
lAmA

and QB
lBmB

are the moments of multipoles A
and B expressed in spherical harmonics [18] and
TlAlBmAmB

� ~RAB) is the geometric interaction tensor depend-
ing on the interparticle distance vector ~RAB [21] between
multipoles on sites A and B:
TlAlBmAmB
� ~RAB� � ��1�lBI�lA�lBmA�mB

� ~RAB�

���������������������������������������������������������������������������������������������
�lA � lB �mA �mB�!

�lA �mA�!�lB �mB�!

�lA � lB �mA �mB�!

�lA �mA�!�lB �mB�!

s
; (2)
where the dependency on the distance is given by the
complex conjugate of the irregular normalized spherical
harmonic function
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Hx is the only nonvanishing component of an external
uniform magnetic field of the form ~H � �Hx; 0; 0�.

Two-dimensional films of multipoles or their combina-
tions corresponding to particles of different geometry on a
lattice have been considered. In this study we restrict
ourselves to rotationally symmetric multipoles with dipo-
lar and octopolar contributions (e.g., Q30 or Q30 �Q10).
Rotated moments have components with m � 0. In the
following, the description Ql0 means that there exists a
coordinate system in which the moments can be repre-
sented by Ql0. The weak dotriacontapolar interaction is
not presented here as octopolar and dotriacontapolar inter-
actions break the isotropic behavior of dipoles on square
and triangular lattices in the same way and the symmetry of
the stable magnetic state remains unchanged. Our aim is to
give a reasonable theoretical description of finite arrays.
For that reason and in order to avoid symmetry adapted
structures we use open boundary conditions. Lattice sizes
up to 60� 60 have been used. To prevent artificial effects
we used no cutoff. A standard MC technique was used [3].
The rotational space was sampled uniformly and was not
restricted, i.e., a moment can try any new angle. An ex-
tremely slow annealing procedure has been applied. To
avoid metastable states we have performed two different
simulations of the same system simultaneously starting
them at different ‘‘seeds’’ for the random number generator
to ensure that the samples take different path to the equi-
librium. Only when both samples reached the same stable
energy level it has been deduced that the system has
reached equilibrium. The high in-plane coercivity is typi-
cally found in assemblies of single domain nanoparticles
with a height-to-diameter ratio h=d � 0:5 [6,8,9,13]. Such
particles possess dipole and octopole moments with
Q30=Q10 	 0:5 [19]. We have calculated stable configura-
tions for pure octopoles and combined multipoles with 0 �
Q30=Q10 � 3:0. The octopolar moments are unidirec-
tional, i.e., they can be represented as vectors. We find
that on the square lattice, octopoles form lines aligned
antiparallel while on the triangular lattice the moments
are ferromagnetically ordered. Hence, the octopolar inter-
action on a triangular and a square lattice introduces an
easy-plane and a tri- and a biaxial in-plane anisotropy,
respectively. In contrast to finite dipolar systems avoiding
uncompensated poles by domain formation, a finite octo-
polar system is not sensitive to the formation of free poles
in most geometries as octopoles do not interact with a field
but with the field curvature. Therefore the low-temperature
configurations in finite samples are still parallel lines for a
triangular lattice and antiparallel lines for a square lattice.

With increasing dipolar interaction the pattern changes.
A typical low-temperature configuration consists of alter-
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nating regions of uniaxial parallel and antiparallel lines
such as in Fig. 1(b). On a square lattice the width of regions
with parallel lines is usually 2–3 lattice parameters. In 

10% of calculations despite a very long relaxation super-
domains [Fig. 1(f)] appear. The energy of ideal and MC
configurations as a function of Q30=Q10 is plotted in
Fig. 2(a). Figure 2(b) gives the size dependence of all
energy contributions for parallel lines. We find that the
dipole-octopole energy contribution (Ed�o) is minimal for
the parallel while maximal for the antiparallel lines. The
dipole-dipole (Ed�d) and octopole-octopole (Eo�o) inter-
actions, in contrast, prefer antiparallel lines. Therefore for
sample sizes L< 9 and 0:25<Q30=Q10 < 0:8 the state of
coexisting parallel and antiparallel lines has the lowest
total internal energy. For L > 9 the antiparallel lines are
preferable for all Q30=Q10 as the long-range dipolar con-
tribution increases. The energy difference between anti-
parallel lines and coexisting phases or superdomains �E
grows with increasing Q30=Q10 [Fig. 2(a)]. However, for
0<Q30=Q10 < 0:6 �E is very small (
2%), while the
configurational entropy in a system of parallel or antipar-
allel lines drastically increases with the system size Sc �
k ln�2� 2L�. As the entropy increases boundless with L,
in contrast to the slow convergence of the dipolar sum,
the free energy of the coexistence is lower for nonzero
temperatures.

Formation of superdomains gives an additional contri-
bution to the entropy. The size of superdomains in finite
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FIG. 1 (color online). Hysteresis loops for a 20� 20 square
nanoarray with Q30 � 0:5Q10 and a pure dipolar system
[inset (d)]. The magnetic field is applied in the x direction.
Insets (a)–(c) give a part of the intermediate magnetic configu-
rations; (f) and (e) show stable zero-field configurations for
combined multipoles and the pure dipolar case, respectively.
Thermal energy is kT � 0:6Ek. The field is expressed in �0MSVD

Ek

with�0 —the permeability of free space and VD —the volume of
a dot.
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dipolar systems is driven by the pole avoidance principle.
While the energy cost due to the wall formation increases
only linearly with the domain size, the gain in the long-
range dipolar interaction increases with the square of the
domain size and only a rare formation of superdomains is
observed at low temperatures. The additional entropy for
large superdomains is small. Approaching Tc the domain
size decreases, the corresponding entropy increases and the
superdomains appear more frequently. This finding is in
accordance with the experiment [16] giving evidence for
formation of the large in-plane collinear domains extend-
ing across several dots. At zero temperature the antiparallel
lines are preferable.

We have calculated the specific heat Cv�T; L�, the order
parameter q, and the susceptibility �q�T; L� for different L
and Q30=Q10. Using � � �kT��1, Cv�T; L� and �q�T; L�
are deduced applying the fluctuation-dissipation theorem
Cv � k�2�hE2i � hEi2� and �q � �Ek�hq

2i � hqi2�.
Figure 3 shows the thermodynamic characteristics in
the case of a system with Q30=Q10 � 0:5. We use q �
N�1jnx � nyj, where N � nx � ny is the total number of
moments and nx, ny number of moments aligned with X or
Y directions [15]. All systems show maxima of specific
heat and susceptibility at the same temperature confirming
the existence of a phase transition. In the following it will
be demonstrated that higher-order interactions signifi-
cantly influence magnetization reversal in nanoarrays.

The field dependence of magnetization in square and
triangular arrays of dots with in-plane magnetization and
0 � Q30=Q10 � 1 has been calculated. A pure dipolar
system does not show any easy-axis hysteresis. In a multi-
polar array, on the contrary, the hysteresis loop is quite
open. The squareness s depends on the composition, the
strength of multipoles and on the temperature. Figure 1
shows the magnetization reversal of a square lattice with
Q30=Q10 � 0:5 corresponding to an array of ultrathin par-
ticles with h=d � 0:5 [19] and for a pure dipolar system
[h=d 
 1, Fig. 1(d)]. The field is scaled with the pair in-
teraction energy Ek between two dots magnetized mutually
parallel but perpendicular to the bond Ek / 1=RlA�lB�1

AB ,
therefore, contributions from moments of different order
in combined multipoles scale differently with RAB. All
0.0 0.5 1.0 1.5

-1.0

-0.5

Q30/Q10

<
E

>
m

om
en

t

  Parallel lines
  Superdomains 
  Phase of coexistence
  Antiparallel lines

0 50 100

-1.0

-0.5

 ( ) Dipole-Dipole

 ( ) Octopole-Octopole

 ( ) Dipole-Octopole   
 <

E
>

   
m

om
en

t

L

(a) (b)

FIG. 2 (color online). (a) Internal energy of ideal parallel, anti-
parallel, coexisting, and superdomain configurations for L � 20
as a function ofQ30=Q10 on a square lattice; (b) Size dependence
of different contributions of the magnetostatic energy for parallel
and antiparallel lines (scatter) for Q30=Q10 � 0:5.
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FIG. 3 (color online). MC results for the order parameter (a),
specific heat (b), and susceptibility (c) of a system with
Q30=Q10 � 0:5 on a square lattice.
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values are given for Q3 � 1, Q1 � 2 and RAB � 1. This
gives s 
 0:5 and Hc�0MSVD 
 0:7Ek. By calculating
Ek this result can be scaled to a square array of any mate-
rial with any interdot distance. For example, for an ar-
ray of permalloy particles at room temperature (MS �
8:0� 105 A=m and vanishing anisotropy, Ku <
1000 J=m3) with h � 20 nm, d � 70 nm, and R �
100 nm we find �0Hc 
 20 mT. Magnetic moments do
not rotate continuously as in a pure dipolar system but are
reoriented line by line [Figs. 1(a)–1(c)] as noncollinear
configurations are energetically unfavorable. From our
calculations it follows that the competition between the
Ed�o and Ed�d � Eo�o interaction energy plays an impor-
tant role for the magnetization reversal. As has been al-
ready demonstrated in Fig. 2(a) the total energy of the
configuration Fig. 1(b) is close or even lower than that of
Fig. 1(c), where all chains are antiparallel. Hence, to go
from configuration Fig. 1(b) to the configuration Fig. 1(c),
an external magnetic field has to be applied and the hys-
teresis appears. Hc increases with decreasing temperature.
This effect is similar to the superparamagnetic temperature
assisted switching. Thus, the hysteretic behavior is prede-
fined by the competition between the octopole-dipole con-
tribution of the magnetostatic energy and its dipole-dipole
and octopole-octopole counterparts. Pure dipolar systems
do not show any significant hysteresis.

On a triangular lattice Hc increases by
10% compared
to the pure dipolar system in good accordance with experi-
ments [6]. The increase is due to the support of the ferro-
magnetic single domain state by all interactions. For
assemblies of single domain nanoparticles with out-of-
plane magnetization [7] multipolar contributions do not
change the ground states of a dipolar system (checkerboard
pattern on a square and labyrinthine structure on a trian-
gular lattice). They give, however, an additional energetic
contribution promoting the magnetization reversal. Thus,
one of the main reasons for increase (decrease) of coerciv-
ity in the in-plane (out-of-plane) magnetic nanoarrays are
multipolar energetic contributions. In addition, the
octopole-dipole interaction between magnetic grains of
ultrathin geometry with in-plane magnetization might ex-
plain the origin and stability of superferromagnetic do-
mains in magnetostatically coupled nanosystems [9,17].

In conclusion, systematic investigation of multipolar
low-temperature stable configurations on a triangular
20720
and a square lattice have been carried out theoretically.
In contrast to previous results we demonstrate that the
MP-MP interactions change considerably stable low-
temperature dipolar states. The dipole-octopole interaction
is an important component that might also explain the
superferromagnetic behavior in dense grain magnetic
materials and magnetic arrays. Tuning the multipole mo-
ments by changing the geometry of nanoparticles offers a
new route to the control of the coupling behavior and
therefore the hysteretic properties of magnetic nanoparticle
arrays.
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