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Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion
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In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which
leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic
superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at
which the washboard frequency of the vortex lattice matches the spin wave frequency !s�g�, where g are
the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap,
measurement of the I-V characteristics provides a new method to obtain information on the spectrum of
magnetic excitations in borocarbides and cuprate layered magnetic superconductors.
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FIG. 1 (color). Vortex lattice moving with the velocity v in-
duces a spatially periodic ac magnetic field h�x; t� which excites
the system of magnetic moments shown by purple arrows. This
additional dissipation results in current peaks in the I-V charac-
The coexistence of magnetism and superconductivity was
observed in many crystals, such as RMo6S8, RRh4B4,
RBa2Cu3O7��, and �R;A�CuO4�� (A � Sr;Ce) with the
temperatures of magnetic ordering TM much smaller than
the superconducting critical temperature Tc; and also in
borocarbides RT2B2C and ruthenocuprate RuSr2GdCu2O8

with TM of the same order as Tc. Here R is the rare-earth-
metal element, while T � Ni;Ru;Pd; Pt. In such crystals f
electrons of ions R give rise to localized magnetic mo-
ments, while conducting electrons exhibit Cooper pairing.
In all these crystals, except HoMo6S8 and ErRh4B4, mag-
netic moments order antiferromagnetically below TM.
Such magnetic ordering coexists with superconductivity
without strong interference because spin density varies on
the scale much smaller than the superconducting correla-
tion length and the net magnetic moment vanishes; for
review see Refs. [1,2].

In this Letter we consider interplay between magnetic
and superconducting excitations in magnetic superconduc-
tors, particularly interaction between a moving vortex
lattice and spin waves via the ac magnetic field induced
by moving vortices. The energy transfer from vortices to
the magnetic system leads to dissipation which is addi-
tional to that caused by quasiparticles. This results in
strong current peaks in the dc I-V characteristics at volt-
ages at which the washboard frequency of vortex lattice [3]
matches the spin wave frequency !s�k� and k matches a
reciprocal vortex lattice vector g. We propose a new tech-
nique to study the magnetic excitation spectrum of mag-
netic superconductors, based on this phenomenon. Our
technique provides information similar to that obtained
by the inelastic neutron scattering but large crystals are
not needed, and it can be used when the inelastic neutron
scattering is ineffective, as in the case of Sm compounds
due to a large cross section for neutron capture.

First we consider slightly anisotropic superconduc-
tors, i.e., all systems mentioned above except
SmLa1�xSrxCuO4�� and RuSr2GdCu2O8 crystals, and
probably also Sm2�xCexCuO4��. The latter are layered
superconductors with intrinsic Josephson junctions [4–6].
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We assume, for simplicity, a uniaxial crystal structure
with the principal axis along z. The dc magnetic field is
applied along the z axis (see Fig. 1) and we assume that the
magnetic induction B�r�, r � x; y, inside the superconduc-
tor corresponds to the ideal Abrikosov vortex lattice (for
simplicity we assume the square one takes place; such a
lattice is realized in clean borocarbide crystals in field Bkc
in some field intervals [1]). The sublattice magnetization in
the case of antiferromagnetic ordering is assumed to be
oriented in the �x; y� plane. The dc transport current with
the density j is along the y axis, which, due to the Lorenz
force, causes motion of the vortex lattice with the velocity
v along the x axis.

We use the quasistatic approach assuming that the space
structure of the magnetic field is the same as in the static
vortex lattice, but the field moves in the same way as a vor-
tex lattice does. Thus all quantities describing the moving
vortex lattice, i.e., the magnetic field and supercurrents,
have the dependence on the coordinates and time in the
combination �r� vt�. In the field interval B� Hc2 the
magnetic field should be found from the London equations
[2,7]
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teristics in magnetic superconductors.
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where js is the supercurrent, A is the vector potential, � is
the phase of the superconducting order parameter, M is the
local magnetization, �0 is the flux quantum and �? �
�x � �y is the London penetration length for currents in
the �x; y� plane in the absence of magnetic moments.
Further, rn�t� � rn�0� � vt are the coordinates of vortices
and rn�0� form a regular vortex lattice. From Eqs. (1)–(3)
we obtain
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To relate the Fourier components of Mz�r; t� � M and
Bz�r; t� � B we use the linear response approximation in
which supercurrents induce the ‘‘external’’ magnetic field,

H�k; !� � B�k; !� � 4�M�k; !�; (5)

acting on the magnetic moments, where M�k; !� �
��k; !�H�k; !� and ��k; !� � �zz�k; !� is the suscepti-
bility of the magnetic system. This approach is valid for the
magnetization harmonics gx � 0, satisfying the condition

jM�g; gxv�j2=��nM�2 � 1; (6)

where nM is the density of magnetic ions of magnetic
moment �. For an antiferromagnet with two sublattices
the magnetic susceptibility is given [8] by

��k; !� �
!M!s�k�
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s�k� �!2 � i!�s

: (7)

Here !M � �2nM=�2@� at �B� kBTM, !s�k� is the
magnetically active spin wave dispersion renormalized
by the superconductivity [2], while �s is the relaxation
rate of spin waves due to the interaction with phonons.
Using Eqs. (4) and (5), we obtain for the Fourier compo-
nents �k � g � 2��B0=�0�
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where B0 is the average induction and n;m are integers.
From Eq. (8) we see that magnetic moments renormalize
the London penetration length [2] as �?�k; !� � �?�1�
4���k; !�	�1=2. Solving Eq. (8) we obtain the Fourier
components of the external field H as

H�k; !� � �2��4B0
��k� g���!� gxv�

1� 4���g; !� � �2
?g

2 : (9)

Thus, the moving vortex lattice induces a spatially periodic
ac external magnetic field h�r; t� � H�r; t� � B0 along the
z axis characterized by momenta g and washboard fre-
quencies! � vgx. At � � 0 for �? � 1300 �A, typical for
borocarbides, the amplitude of the main harmonic, n � 1,
m � 0 is about 20 G. The moving vortex lattice induces
also an electric field E � �v
 B	=c (as well as an ac
component) along the current direction.

When the alternating magnetic field is not parallel to the
sublattice magnetization, it excites spin waves with mo-
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menta g and frequencies !s�g� � g � v. This condition is
satisfied if v exceeds some critical velocity determined by
the spin wave velocity, as in the case of Cherenkov radia-
tion. The spectrum of magnetic excitations is determined
by the direct exchange of magnetic ions, by their RKKY
interaction via the conducting electrons and by the mag-
netic anisotropy. The dispersion in a two-sublattice anti-
ferromagnet is linear, !s�k� � vs � k, when the magnetic
anisotropy is absent. Here vs � Ja=@ is the spin wave
velocity, J is the exchange energy, and a is the magnetic
correlation length. For such a spectrum, generation of spin
waves by a moving vortex lattice occurs if v � vs, as in
the case of sound generation by a moving vortex lattice due
to the ac electric field [9]. The magnetic anisotropy in-
duces a gap, �, into the spin wave dispersion, !s�k� ������������������������������

�2=@2 � v2
sk

2
p

. Then the condition for spin wave genera-
tion of momentum k is v2 > v2

s � ��=@k�2.
Assuming that sublattice magnetizations are almost per-

pendicular to the applied magnetic field, we obtain for the
power per unit volume transmitted from the vortex lattice
to the magnetic system the expression [8]
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where angular brackets denote time and space average.
To find the velocity of the vortex lattice at a given

transport current density j, we equate the power per unit
volume performed by the battery, jE, to the sum of the
power dissipated by quasiparticles, �v2, and that trans-
mitted to the magnetic system, PM. Here � is the viscous
drag coefficient due to quasiparticles in normal vortex
cores. It is given by the Bardeen-Stephen expression � �
B0H



c2	n=c

2, where 	n is the normal state conductivity,
H
c2 � �0=�2�
2

?� is the orbital upper critical field and 
?
is the superconducting correlation length in the direction
perpendicular to the applied magnetic field. Taking into
account that E � vB0=c and ! � vgx � cEgx=B0, we
find v and finally j-E (i.e., I-V) characteristics in the
intervals of E, where inequality Eq. (6) is fulfilled:
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From this equation we see that the current density as a
function of E has peaks corresponding to resonances be-
tween the ac magnetic field and spin waves, i.e., when
!�n;m� � 2�v�B0=�0�

1=2n � �2�nc=H
c2	n�1=2
0 �jB

1=2.
Let us discuss the behavior of j�E� near resonances. We

introduce the frequency deviation �! � !s�g� �! such
that �s � �!� !s�n;m�. Then ��g; !� � !M=�2�!�
and Im���g; !�	 � !M�s=�2�!�2. In the interval of
frequency deviations �! where �2

?g
2 � 4���g; !� we

estimate
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Because of the condition Eq. (6) our approach is valid for
@�!>��0=�4��?�2. In this interval, we obtain an in-
equality on the ratio of the additional current caused by
spin waves over the current background:
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!��0

n2

�n2 �m2�2
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In magnetic insulators �s is typically of order 106 s�1. One
can anticipate the same value in magnetic superconduct-
ing crystals, as conducting electrons are gapped. For
HoNi2B2C, taking H
c2 � 10 T, nM � 1022 cm�3, 	n �
105�� cm��1 at ! � 1010 s�1 we derive �j�n;m�=j <
0:8n2=�n2 �m2�2. Thus, the peak n � 1, m � 0 is observ-
able even in the frequency interval where our linear re-
sponse approach is valid. Here the magnetic system
deviates only slightly from equilibrium as energy is trans-
formed further to phonon bath.

Based on Eq. (11) we see that measurements of the I-V
characteristics at different magnetic fields and currents
may provide information on the spin wave dispersion
!s�g�. The washboard frequency !� j

������
B0

p
and the re-

ciprocal vortex lattice vectors g�
������
B0

p
may be changed

independently by varying B0 and j, but an important
question is what are limitations on the variations of the
magnetic field and the current density. Momentum k�
2��B0=�0�

1=2 is of order 106 cm�1 in fields B0 � 1 T
and increases as one approaches Hc2, but then harmonic
amplitudes h�g; !� drop. Limitations on frequency are due
to limitations on the current density, which should be lower
than the depairing current density, and also should not lead
to excessive heating. From Eq. (11), to reach frequency !
one needs current density j�!� � 	n!H



c2=cgx and the

electric field E�!� � !B0=cgx. At B0 � 1 T we obtain
j�!� � 107n�1�@!=1 K� A=cm2 for the lowest harmon-
ics, while for higher harmonics higher ! may be reached.
The depairing current density for borocarbides is of order
107 A=cm2 and thus spin waves with energies @! & 1 K
may be probed without strong suppression of supercon-
ductivity by the transport current. For the dissipation power
per unit volume, P dis � jE � 	n!

2�0H


c2=4�2c2, we

estimate P dis � 108n�2�@!=1 K�2 W=cm3. To diminish
heating the pulse technique may be used, as in I-V mea-
surements by Kunchur [10].

To date, neither the strength of magnetic anisotropy nor
the structure of excitations are known in borocarbides. As
only the low energy part of the spin wave spectrum may be
probed by I-V measurements, we cannot predict yet
whether resonance conditions for the lowest harmonics
will be fulfilled in borocarbides. However, we can antici-
pate that higher harmonics will be effective in the case of
weak pinning.

Next we discuss highly anisotropic layered crystals like
SmLa1�xSrxCuO4��. This material is especially interest-
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ing because its T
 structure leads to a two-dimensional
character of the magnetic system. Here magnetic Sm2O2

and nonmagnetic La2�xSrxO2�� layers alternate in the
barriers between the superconducting CuO2 layers. The
Josephson nature of the interlayer coupling in this crystal
has been confirmed by observation of the double Josephson
plasma resonance stemming from two layers in a unit cell
[4]. The specific heat measurements show that magnetic
ordering is absent down to a temperature of 0.3 K and a
magnetic gap, if any, lies below 0.3 K. They may also be
indicative of competing interactions that might be de-
scribed by the two-dimensional J1-J2 Heisenberg model
with J2=J1 > 0:4 [11]. Such a model has very complex
dynamics and contains a variety of transitions down to zero
temperature, making it an ideal testing ground for the
theory of quantum phase transitions.

If the magnetic field is applied perpendicular to the
layers (along the c axis), it induces pancake vortices which
do not form a regular lattice in magnetic fields above 20 G
as they order along the c axis only due to weak Josephson
and magnetic interactions [12]. This makes excitation of
spin waves ineffective by moving the vortex lattice induced
by a perpendicular magnetic field. When a magnetic field is
applied parallel to the layers (in the ab plane, along the y
axis), the situation is drastically different, because now
Josephson vortices [13–16] are induced. In high fields
they form a lattice which is quite regular in the x direction
(parallel to the layers). Josephson vortices do not have
normal cores and so only thermally induced quasiparticles
(or those near the nodes in the case of d-wave pairing)
cause dissipation. A weak interlayer tunneling transport
current, which leads to vortex motion in the x direction,
cannot destroy superconductivity and produces much less
heating than in the case of isotropic or weakly anisotropic
superconductors.

The distribution of the magnetic field B�r� inside intrin-
sic Josephson junctions is described by coupled finite-
difference differential equations for the phase difference
’n and for the magnetic field Bn inside the junction n
between layers n and n� 1 [14,16]. Accounting for the
magnetization Mn of ions inside intrinsic Josephson junc-
tion n we obtain equations for the dimensionless variables
’n, bn � Bn2��ab�c=�0, mn � Mn2��ab�c=�0, and
hn � bn � 4�mn:

@2’n
@�2 � �c

@’n
@�
� sin’n �

@hn
@u
� 0;

r2
nhn �

bn
l2
�
@’n
@u
� �ab

@
@�

�
@’n
@u
�
bn
l2

�
� 0;

(14)

where u � x=�J, � � t!p, �J � �s, s is the interlayer
distance, � � �c=�ab is the anisotropy ratio, �c and �ab
are the London penetration lengths for currents along the c
axis and in the ab plane, respectively, !p � c=��c

�����

c
p
� is

the Josephson frequency, 
c is the dielectric function along
the c axis, �c � 4�	c=�!p
c�, �ab � 4�	ab=��

2
c!p�,
	c and	ab are quasiparticle conductivities along the c axis
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and in the ab plane, respectively. Using a linear response
approximation, mk! � �bk!=�1� 4��k!�, where � �
�yy, we see that hk! � bk!=�1� 4��k!� satisfies the
same equations as bk! at � � 0, but with the renormalized
parameter ~l�2��1�4��k!�l�2. For SmLa1�xSrxCuO4��

we estimate ~l�2 � 1 because !M � 1:8
 108 s�1, l2 �
2
 104 at � � 0:8�B, nM � 5
 1021 cm�3, and �ab �
2000 �A.

In the following we consider large enough fields B>
BJ � �0=�2�s�J�. Then the Josephson vortices fill all
intrinsic junctions, overlap strongly and form a regular
triangular lattice [13–16]. (An illustration is given in
Ref. [13].) For SmLa1�xSrxCuO4�� we have � � 500,
!p � 1012 s�1, and BJ � 0:5 T. In a Josephson system
the washboard frequency is the Josephson frequency ! �
!J � 2eV=@, where V is the voltage between neighboring
layers. For a triangular lattice at frequencies and the mag-
netic fields satisfying the conditions l2 � �1� 4��� and
j2 ~!� ~bj * 1, where ~! � !=!p and ~b � B0=BJ, the so-
lution of Eq. (14) has the form

’n�u; �� � ~!�� ~bu��n�
4 sin� ~!�� ~bu��n�

4 ~!2� ~b2
;

hn�u; �� � �h0 cos� ~!�� ~bu��n�; h0 �
~b

4 ~!2� ~b2
;

where we neglected �c and �ab. We estimate h �
h0�0=�2��

2
ab�� � 0:16 G at ! � 0:1!p and B � BJ.

Near the Eck resonance, 2 ~! � ~b, the amplitude of the
magnetic field h is larger. For the reciprocal lattice vector
we have g � �2�sB=�0; 0; �=s�. So gx � 1=�J �
104 cm�1 at B � BJ.

Assuming that sublattice magnetization is almost per-
pendicular to the applied magnetic field or that magnetic
ordering is absent, we obtain for the I-V characteristics

j�V� � 	eff
V
s
�
esh2

@
Im
�
�yy

�
g;

2eV
@

��
; (15)

where 	eff � 	c � 2	abB2
J=��B�

2 describes dissipa-
tion due to quasiparticles. At resonance !J � !s�g�, we
estimate �j=j � 2�2c2s2h2!M=�!J	eff�s�

2
0�. Estimat-

ing 	c ’ 10�3�� cm��1 and 	ab ’ 4
 104�� cm��1

as in Bi2Sr2CaCu2O8 and taking s ’ 12 �A as in
Sm2�xCexCuO4��, we obtain �j=j � 4 and
jM�g; !J�j=��nM� � 0:3 at ! � 1012 s�1 and B � BJ
and bigger values near the Eck resonance. Certainly, such
frequencies are sufficient to probe almost the complete
spectrum in SmLa1�xSrxCuO4��.

In conclusion, we propose to probe low-frequency mag-
netic excitations in magnetic superconductors by measur-
ing I-V characteristics in the mixed state with a moving
vortex lattice. Coupling of such a lattice to magnetic mo-
ments is due to an ac magnetic field which is inherent to
vortex motion. The energy interval of spin waves which
can be probed in isotropic and moderately anisotropic
20700
superconductors is limited by the depairing current and
heating. If spin wave energies exist in this interval, they
affect the vortex motion strongly and should be easily seen
in the I-V characteristics as current peaks at corresponding
voltages. Such an effect may be observed in borocarbides if
they support spin waves with energies below 1 K. For
highly anisotropic layered superconductors in parallel
magnetic fields, higher spin wave energies may be probed
by use of moving Josephson vortices. This is sufficient to
study almost the complete spin wave spectrum in
SmLa1�xSrxCuO4�� with exotic magnetic ordering, other-
wise inaccessible by neutron scattering techniques.
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34, 175 (1985); H. Matsumoto, H. Umezawa, and
M. Tachiki, Phys. Rev. B 25, 6633 (1982); K. E. Gray,
Phys. Rev. B 27, 4157 (1983).

[3] A. T. Fiory, Phys. Rev. Lett. 27, 501 (1971).
[4] H. Shibata, Phys. Rev. Lett. 86, 2122 (2001); T. Kakeshita

et al., Phys. Rev. Lett. 86, 4140 (2001); D. Dulić et al.,
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