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Intervalley-Scattering-Induced Electron-Phonon Energy Relaxation
in Many-Valley Semiconductors at Low Temperatures
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We report on the effect of elastic intervalley scattering on the energy transport between electrons and
phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy
flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating
experiments on doped n-type Si samples with electron concentrations �3:5–16:0� � 1025 m�3 are
performed at sub-Kelvin temperatures. We find a good agreement between the theory and the experiment.
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Since the low-temperature hot-electron experiments by
Roukes et al. [1], the energy transport between electrons
and phonons has continued to be a topical subject.
Recently, there has been significant experimental and theo-
retical interest in the electron-phonon (e-ph) energy re-
laxation in metals and semiconductors at low temperatures
[2–8]. The understanding of thermal e-ph coupling is
important for several low-temperature devices such as
microbolometers, calorimeters, and on-chip refrigerators
[4,9]. This coupling plays also an important role in correct
interpretation of low-temperature experiments [5] and the
e-ph energy relaxation rate gives direct information about
phonon mediated electron dephasing [10].

Interaction between electrons and phonons is strongly
affected by the disorder of the electron system and, there-
fore, the problem is commonly divided into two special
cases: the pure and impure (or diffusive) limit of e-ph
interaction. The crossover between these two regions is
defined as ql � 1, where q is the phonon wave vector
and l the electron mean free path. If the whole phonon
system is to be considered then the phonon wave vector
can be conveniently replaced by the thermal phonon
wave vector qT � kBT=@v, where T is the temperature of
the lattice and v the sound velocity. Recent theory for
single-valley semiconductors [8] predicts that the e-ph
energy relaxation is strongly enhanced when the system
enters from the pure limit (ql > 1) to the diffusive limit
(ql < 1). The behavior is the opposite in comparison to
metals where it is well known, since the pioneering work
by Pippard [11], that the disorder of the electron system
tends to suppress the e-ph energy relaxation (see also
Ref. [2]). In semiconductors, due to small electron density,
the e-ph interaction can be described by deformation po-
tential coupling constants, which do not depend on the
electronic variables, while in metals the coupling strongly
depends on the electron momentum [12]. This fundamen-
tal difference eventually leads to disorder enhancement
of the relaxation in the diffusive limit in single-valley
semiconductors [8].
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In many-valley semiconductors the situation is further
altered due to intervalley scattering, which is the topic of
our work. Because of lack of screening, the e-ph energy
flow rate is strongly enhanced in many-valley semiconduc-
tors in comparison to single-valley ones at the diffusive
low-temperature limit. We approach the e-ph energy trans-
port problem by first considering the phonon energy at-
tenuation rate due to electrons (or phonon-electron energy
relaxation rate). This procedure is attractive, because it
enables straightforward comparison between our work
and previous literature, which has concentrated mainly
on ultrasonic attenuation [13–17]. We calculate the total
e-ph energy flow rate by using the phonon energy attenu-
ation rate and perform low-temperature electron heating
experiments to doped n-type Si samples. We find excellent
agreement between the theoretical and the experimental
e-ph temperature responses.

As discussed above, the electron-phonon coupling in
semiconductors can be described through deformation po-
tential coupling constants, which do not depend on the
electron variables (in a single valley). The strain induced
conduction band energy shifts �vl (l � 1; 2; . . . ; L, where
L is the number of valleys) can be written conveniently in
matrix notation as �v � D�, where f�vgl � �vl and D
is the deformation potential L� 6 matrix (containing
the deformation potential coupling constants). � �
� �xx �yy �zz �xy �xz �yz �T is the strain component
vector and ��� �

1
2 �@u�=@�� @u�=@�� are the symmet-

ric strain components of displacement u. For the six Si
conduction band minima (see Fig. 1) we have �vl �
�d�"xx � "yy � "zz� ��u"ll [18], where �d (�u) is the
dilatational (uniaxial) deformation potential constant.

Here we deal with a long wavelength limit where the
phonon field can be identified with a classical acoustic
wave u � eu exp��i�q 	 r�!t�� with polarization e
(jej � 1). The strain now reduces to ��� �

�i
2 �

�q̂�e� � q̂�e��qu (q̂ � q=q), which can be expressed in
matrix form as � � �iqSu and we find equation
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FIG. 1. Schematic illustration of the constant energy ellipsoids
of Si conduction band valleys. The valleys are located close to
the X point in the first Brillouin zone. Elastic scattering rates
1=�1 and 1=�2 couple the different classes of the valleys.
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�v � �iqDSu; (1)

which describes how the displacement makes the band
edges oscillate in a many-valley system. In the diffusive
long wavelength limit the phonon momentum itself cannot
transfer the electrons from one minima to another, because
this process would require large momentum q
 1=a (a is
the lattice constant). Then the electron nonequilibrium,
generated by the acoustic field, relaxes towards local equi-
librium by two processes: diffusion and elastic intervalley
impurity scattering. When the strain lifts the valley degen-
eracy, elastic intervalley scattering provides a path for the
electron system to relax towards local equilibrium. This
path is favorable if the time scale related to diffusion over
length 
q�1 is sufficiently large, i.e., when q2D< 1=�iv,
where 1=�iv is the total elastic intervalley transition rate (D
is the diffusion coefficient). In this limit the linearized
many-valley relaxation-time Boltzmann equation [19] re-
duces to a simple rate equation, which couples the change
in the electron density �nl of valley l to that of valleym via
the intervalley scattering rate ��1

lm :

�
@�nl
@t
�
X
m

��1
lm ��nl��nm�2�1�"F���vl��vm��: (2)

Here �1�"F� is the single spin and valley density of states at
the Fermi level "F � kBT. We assume that strain equiva-
lent valleys are coupled with rate ��1

lm � ��1
1 and that the

valleys whose degeneracy can be lifted with strain are
coupled with rate ��1

lm � ��1
2 . In the case of Si the coaxial

valleys are always equivalent whereas the degeneracy of
the perpendicular valleys can be lifted (see Fig. 1). Now the
solution of Eq. (2) is �n � 2�1�"F��1� i!�iv��1M�v,
where �iv � �2=L and fMgl;m � �l;m � L�1. The
phonon-electron relaxation rate 1=�q is related to the dis-
sipated heat Q of the acoustic field through the standard
relation 1=�q � Q=J" � !hImf�vg 	 Ref�ngi=J", where
J" is the acoustic energy flux density and hi stands for
time average. Using this relation and Eq. (1) we find
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��q��
�1 �

2�1�"F�

	dv2
�

!2
q��iv

1�!2
q��

2
iv

��; (3)

where !q� � v�q, � is the mode index and 	d is the mass
density. The factor �� � e

TSTDTMDSe and it obviously
depends only on the polarization e, on the direction of
propagation q̂ and on the deformation potential coupling
constants. In the case of Si we have �� �

2�2
u�
P
i�q̂iei�

2 � 1
3 �q̂ 	 e�

2� and 1=�iv � 6=�2. Note that
Eq. (3) does not depend on screening, because there are
no total electron density fluctuations, i.e.,

P
�nl � 0.

We can describe a degenerate electron system by an
equilibrium distribution at temperature Te. This holds
even in the presence of net heat flow between electrons
and phonons. The heat flow only creates a nonequilibrium
between the electrons and phonons, which relaxes towards
equilibrium at a rate 1=�q� per single phonon mode. By
following Perrin and Budd [20] this nonequilibrium can be
expressed using the relaxation-time approximation of the
phonon-electron collision integral�@N�!q��

@t

�
ph�e

� �
N�!q�� � NTe�!q��

�q�
; (4)

where N�!q�� and NT�!q�� � �exp�@!q�=kBT� � 1��1

are the nonequilibrium and equilibrium phonon distribu-
tion functions, respectively. The total stationary heat flow
P through the coupled electron-phonon system is the en-
ergy average of the collision integral:

P �
X
�

Z dq

�2
�3
@!q�

�@N�!q��
@t

�
ph�e

; (5)

where the summation is performed over the acoustic eigen-
modes of the crystal. The only experimentally meaningful
situation is such that the phonon system is coupled to some
thermalizing bath, which is at temperature T0. If the cou-
pling is strong or P is small we can approximate N�!q�� ’
NTph
�!q��, where Tph is the (possibly local) phonon tem-

perature, and Eq. (5) reduces to the familiar form

P � F�Te� � F�Tph�; (6)

where F�T� is the energy flow rate control function. Using
Eqs. (3)–(6) and assuming that �kBT=@��1

iv �
2 is clearly

below unity, the energy flow rate control function can be
expressed in a closed form

F�T� �
�1�"F�B5


2	d@5

X
�

�
��

v5
�

�
�
�iv�kBT�6

�
4�1�"F��2

uB5

45
2	d@5v5
T

�
17

8
�

�
vT
vL

�
5
�
�2�kBT�

6; (7)

where the first equality is valid for an arbitrary many-valley
system. The constant B5 �

R
1
0 dxx

5=�1� exp�x�� �
120
6=945 and hi� stands for average over a solid angle.
The second equality applies for silicon and there we have
further assumed that the phonon eigenmodes are isotropic
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TABLE I. The characteristics of the samples: N, carrier con-
centration; 	e, 1.5-K resistivity; l, electron mean free path; d, Si
film thickness. All samples have a 400 nm thick buried oxide.

Sample N (1025 m�3) 	e (10�5 �m) l (nm) d (nm)

A 3.5 1.04 5.06 70
F 6.7 0.63 5.42 58
G 12.0 0.51 4.54 58
H 16.0 0.44 4.34 58

µ

FIG. 2. (a) Schematic illustration of the sample geometry and
the measurement setup. The 
9500 m long n� Si film is
heated with a dc current density J. Te and Tph are measured
using current biased S-Sm-S (Al-Si-Al) contacts (only the bias-
ing circuit for Te is depicted). The Tph thermometer is electri-
cally isolated from the main Si film by a 
1 m gap. (b) The
power density P � 	eJ

2 vs T6
e � T

6
ph.
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and that they are described by the longitudinal and trans-
versal sound velocities vL and vT .

Equation (7) is valid when �kBT=@��1
iv �

2 < 1 and q2
TD <

1=�iv. At low temperatures the dominating condition is the
latter and can be written also as qTl

������������
�iv=�

p
< 1, where � is

the momentum relaxation time. Condition qTl
������������
�iv=�

p
� 1

defines the crossover temperature below which elastic
intervalley-scattering-induced electron-phonon relaxation
dominates over diffusion. If �iv is not orders of magnitude
larger than � this differs very little from the impure-pure
threshold qTl � 1.

Equation (7) suggests that the intervalley-scattering-
induced electron-phonon energy relaxation rate ��1

� /
�ivT

4
e , which can be seen from the approximate rate equa-

tion dP=dTe � Ce��1
� , where Ce � �Te is the electron

heat capacity. As the phonon mediated dephasing rate
1=�ph

i / �
�1
� [10] we find an important relation 1=�ph

i /
�ivT

4
e .

As already pointed out above, screening plays no role in
1=�q� and as a result the intervalley-scattering-induced
electron-phonon energy flow rate in Eq. (7) does not in-
clude any screening parameters, like, for example, screen-
ing wave vector �. Note, however, that there exists also a
single-valley contribution to the energy relaxation which is
due to number density fluctuations in a single valley, but
this contribution is strongly screened in doped semicon-
ductors [16]. By using the single-valley result calculated
by Sergeev et al. [8] and Eq. (7), we find that the ratio
between the many-valley and single-valley energy flow
rate scales roughly as 
1500�l��2��iv=����=T�

2, where
��� � nm�1 and �T� � K. Thus the many-valley effect
is expected to fully dominate in the diffusive limit at high
electron densities and low temperatures. We have tested
Eq. (7) experimentally in the case of n� Si:

The n� Si samples were fabricated on unibond silicon-
on-insulator substrates. Properties of the samples are
listed in Table I and a detailed description about the sample
fabrication can be found in [21]. The sample geome-
try and the experiment is depicted in Fig. 2(a). The elec-
tron and phonon temperatures were simultaneously
measured by utilizing the superconductor-semiconductor-
superconductor (S-Sm-S) thermometry [22] while the elec-
tron gas in the Si film was heated with a dc power density
P � 	eJ2 created by electric current density J. Heating of
the electron gas can cause a substantial increase in the
temperature of the phonon thermometer, as reported re-
cently for a similar n� Si sample as discussed here [6].
To assure that the nonequilibrium phonon distribution (of
the phonons that interact with the electrons in the Si layer)
can be reasonably described with an equilibrium distribu-
tion function, we consider a heating power range where
�Tph � T0�=T0 is clearly below unity.

Figure 2(b) shows the experimental power density vs
T6
e � T6

ph at average bath temperature of T0 � 265 mK.
The solid curves are least square fits to P � S�T6

e � T
6
ph�
20660
with the slope S as a single fitting parameter. We observe
that the electron-phonon temperature response predicted
by Eq. (7) describes all the samples extremely well. The
slopes S are plotted against the electron density in Fig. 3
(left vertical axis). S increases as a function of N, which is
the expected result, because F�T�=T6 / �1�"F�.

In order to perform a more quantitative comparison
between the theory and experiment we estimate the density
of states from free electron gas expression �1�"F� �

�0
1�"F� � �mde=2
@2��3
2N=L�1=3, where we use the Si

density of states mass mde � 0:322me (me is the free
electron mass). For the other parameters we use the typical
values for Si: �u � 9:0 eV, 	d � 2:33� 103 kg m�3,
vT�L� � 4700�9200� m=s. Now the intervalley scattering
time �2 � 6�iv can be determined from S � F�T�=T6

[see Eq. (7)] and it is plotted on the right vertical axis of
Fig. 3. The crossover temperature from the condition
qTl

������������
�iv=�

p
� 1 is found to be � 5 K (average from all

the samples). Thus we are at the qTl
������������
�iv=�

p
 1 limit.
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FIG. 3. Slopes S of the linear fits in Fig. 2(b) and intervalley
scattering time �2 [determined from S and Eq. (7)] as a function
of electron density N. The dashed curve is a polynomial fit that
serves as a guide for the eye. The inset shows tabulated values of
S and �2 (in the units of the axes).
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Equation (3) gives also the phonon or ultrasonic attenu-
ation constant �q� � ��q���1=�2v��. Using this result and
the ultrasonic attenuation data obtained by Dutoit [14]
from n� Si with N � 2� 1025 m�3 at temperature of
2 K at ! � 1:48� 109 s�1 we find �2�N � 2�
1025 m�3� � 0:3 ps. This fits to our measurements ex-
tremely well, which is an important result: the experiment
that probes heat transport between electrons and one co-
herent acoustic mode [14] coincides with our experiment
that probes heat transport between electrons and phonon
gas obeying quantum statistics.

At high N one would expect slowly decreasing or a
roughly constant �2, while our results show a weak in-
crease as a function of N. This unexpected result could be
explained by noting that our samples are in the limit of
strong disorder (kFl � 3:6 on average from Table I).
Whereas, Eq. (7) is essentially based on a semiclassical
free electron gas model, at least finally when the approxi-
mation �1�"F� � �0

1�"F� is made.
Finally, we point out that the intervalley-scattering-

induced electron-phonon energy relaxation can be ob-
served also in several other material systems than n� Si.
Canonical examples would be n� Ge and two-dimensional
electron gas in a (111) Si inversion layer. As the � point in
the valence band of elemental semiconductors is divided
into heavy hole, light hole, and split-off bands the effect
should be particularly strong in various hole systems.
However, due to the complicated nature of the valence
band maximum and effectively zero distance of the differ-
ent bands in k space, the theory, which is valid for con-
duction band electrons, should be modified [23].

In summary, we have studied the effect of elastic inter-
valley transitions on the electron-phonon energy relaxation
rate in many-valley semiconductors in the diffusive limit.
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We derived a general expression for the electron-phonon
energy flow rate [Eq. (7)] and discussed the special case of
n� silicon. Low-temperature experiments on heavily
doped Si samples were performed and good agreement
between the theory and the experiment was found.
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