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Transport and Collective Dynamics in Suspensions of Confined Swimming Particles
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Direct simulations of large populations of confined hydrodynamically interacting swimming particles at
low Reynolds number are performed. Hydrodynamic coupling between the swimmers leads to large-scale
coherent vortex motions in the flow and regimes of anomalous diffusion that are consistent with
experimental observations. At low concentrations, swimmers propelled from behind (like spermatazoa)
strongly migrate toward solid surfaces in agreement with simple theoretical considerations; at higher
concentrations this localization is disrupted by the large-scale coherent motions.
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The collective dynamics of swimming particles are in-
teresting and important for a variety of fundamental and
technological reasons. For example, there is long-standing
interest in the theoretical biology and nonlinear physics
communities in the collective motions of groups of organ-
isms such as flocks and herds. Central issues here include
the mechanisms by which autonomous agents interact to
exhibit emergent collective behavior and the properties of
the resulting behavior. Another is the evolutionary signifi-
cance of these collective motions and whether different
modes of collective swimming are more evolutionarily
favorable than others in various circumstances. Recently,
researchers have begun to experimentally study the fluid
motions that directly arise in suspensions of swimming
microorganisms [1-5], finding a fascinating variety of
phenomena including regimes of anomalous transport as
well as spatiotemporally coherent fluid motion on scales
much larger than the organisms. Furthermore, it has re-
cently been experimentally demonstrated that mass trans-
port in a microfluidic device can be enhanced by the
presence of swimming microorganisms [4].

The present work employs direct simulations to improve
our understanding of these experimental observations.
Attention focuses on a minimal model of the swimmers
that captures the dominant far-field hydrodynamics while
keeping the structure of each swimmer very simple. This
approach is taken for two reasons: first, it focuses atten-
tion on the ‘“‘universal” long-range interactions without
the complicating, computationally expensive, and non-
universal details of swimmer shape and detailed mecha-
nism of propulsion, and second, it allows for relatively
rapid solution of the equations of motion, enabling simu-
lations of large populations. These simulations clearly
illustrate that hydrodynamic interactions alone are suffi-
cient to yield complex collective dynamics in swimming
particle suspensions.

Wu and Libchaber [2] have experimentally character-
ized correlated motions in 1%—10% suspensions of E. coli
confined to a horizontally suspended *“‘soap film” of thick-
ness ~10 um. The fluid displayed intermittent flows in the
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form of swirls and occasionally jets, with length scales of
10-20 pm; this is of the same order of the film thickness,
but the film thickness was not varied so it is not known if
that is what set the scale of the motions. The authors
studied the transport of tracer particles suspended in the
film—note that these particles were 4.5—-10 um in diame-
ter, significantly larger than the bacteria. The mean-
squared displacement (Ar?(z)) of the particles displayed
two distinct regimes, a short time regime with anomalous
(superdiffusive) transport, where (Ar?(f)) ~ ¢, and a
longer time regime where the transport was diffusive.
The crossover time between the anomalous and classical
diffusion regimes increased with increasing bacterial con-
centration, varying between 1 and 10 s as concentration
increased from about 1% —10%. In related work, Soni et al.
[3] studied the motion of a particle in an optical trap
contained within a suspension of E. coli, at volume frac-
tions up to 0.1. They found that the correlation time for the
position of the trapped particle increased monotonically
with cell concentration, reaching a value of 1.2 s for the
most concentrated suspensions.

Goldstein, Kessler, and co-workers have experimentally
studied cell-driven motions in droplets of suspensions of
Bacillus subtilis [5]. In sessile drops, conventional biocon-
vection patterns form, driven by a Rayleigh-Taylor insta-
bility induced as the denser cells swim upward toward the
free surface, where the oxygen concentration is high [6]. In
pendant drops, where the flow is gravitationally stable,
flow patterns are also observed, with a length scale of
~100 pum and a correlation time of 1-2 s. Dramatically
enhanced tracer diffusion is also found. The authors con-
jecture that the origin of these patterns is hydrodynamic
interactions. Mendelson et al. [1] describe quite similar
patterns in a slightly different situation. Colonies of
B. subtilis were grown on agar surfaces. When a drop of
water was placed on a colony, cells immediately began to
swim, forming “whirls and jets” that persisted until the
water soaked into the agar.

Modeling of the collective dynamics of moving organ-
isms has been performed at a number of levels. A number
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of researchers have studied active agent models of moving
groups of self-propelled particles: here each particle moves
and interacts with its neighbors according to an ad hoc set
of rules. A simple but rich model of this type was proposed
by Vicsek et al. [7]. In this model, at each time step every
particle moves a constant distance in the direction of its
current orientation, and the orientation is updated so that it
is the average of the orientations of its neighbors, plus a bit
of noise. As the magnitude of this noise is changed, the
system’s behavior undergoes a transition from ordered to
disordered motion. Grégoire and co-workers [8] found that
this model was able to reproduce the main features of the
experiments of Wu and Libchaber. A related approach was
taken by Toner and Tu [9], who wrote down general field
equations for a conserved quantity (number density of
particles) and a nonconserved one (flux of particles). This
model can exhibit various solutions, including ordered
phases in which all particles move in the same direction
and disordered ones with large fluctuations in number
density.

Another field-theoretic approach, this time with a more
direct connection to the problem of interest here, was taken
by Simha, Ramaswamy, and co-workers [10]. In their
theory, the number of particles is conserved, as is fluid
momentum. The effect of the particles on the fluid as they
swim is accounted for by including a dipole forcing term in
the Navier-Stokes equations. (To leading order in the far
field, a neutrally buoyant swimming particle is a force
dipole.) A third, nonconserved field is the orientation field
of the swimmers, which is treated in a way similar to
phenomenological treatments of the director field in ne-
matic liquid crystals. With this model, the authors predict
that (1) oriented (‘‘nematic’’) suspensions of self-propelled
particles at low Reynolds number are always unstable to
long wavelength disturbances and (2) the number density
fluctuations in this case are anomalously large: for a system
with N particles, the scaled variance ((§N)?)/N of the
number of particles in a given volume diverges as N2/3.
(This divergence is reminiscent of the controversial
Caflisch-Luke divergence prediction in sedimentation
[11].) A similar model has been developed by Liverpool
and Marchetti, in the context of solutions of filament—
motor-protein mixtures [12]. Again, a uniform oriented
state is predicted to be unstable.

The results obtained from the aforementioned studies
are suggestive and intriguing. They show that simple mod-
els obtained from general arguments predict nontrivial
spatiotemporal patterns in the dynamics of self-propelled
particles. But even the models described last, which do
incorporate the Navier-Stokes equations, are limited. They
do not capture from first principles the details of the hydro-
dynamic interactions, they are limited to very large length
scales (as they treat the particle phase as a continuum
field), and there are too many free parameters for conclu-
sive analyses beyond linear stability to be performed. In the
present work, we avoid these limitations, performing and

analyzing the first direct simulations of suspensions of
model self-propelled particles at low Reynolds number.

Simulations are performed with a minimal swimmer
model, shown in Fig. 1, that captures the leading order
far-field effects of hydrodynamic interactions between
swimmers without specifying in detail the structure of
the swimmer or its method of propulsion. Each swimmer
is simply a rigid, neutrally buoyant dumbbell comprised of
two beads connected by a rigid rod of length €. The
orientation of each swimmer is denoted by a unit director
vector n. All the drag on the swimmer is concentrated on
the two beads. The propulsion is provided by a “‘phantom”
flagellum, which exerts a constant force of magnitude f in
the n direction on one of the beads, and an equal and
opposite force on the fluid. The phantom flagellum can
either push or pull on the dumbbell; the “pushing” case
corresponds to most spermatozoa and many other micro-
organisms, but the “pulling”” case is also commonly found
in nature [13]. In our model the parameter p characterizes
the ““polarity” of the flagellar force: if p = 1, the flagellum
pushes the swimmer; if p = —1, it pulls. The results
presented here are for p = 1. Some organisms, such as
E. coli, execute a complex ‘‘run-and-tumble” motion,
during which they change directions at random intervals.
In the present model, we do not account for such organism-
specific effects: in isolation in an unbounded domain each
swimmer would move in a straight line with constant speed
vy = f/2{ + O(§), where { and a are the Stokes law
friction coefficient and radius of each bead. Overall, the
swimming motion exerts no net force on the fluid, so in the
far field the swimmer appears to be a moving symmetric
force dipole (stresslet) [6,10]. In general, the torque bal-
ance on the swimmer also needs to be considered.
However, the leading order far-field flow due to the torques
is weaker than the stresslet contribution, so in the present
minimal model we neglect this effect.

We have performed direct simulations of the particle
motions in suspensions of these simple swimmers confined
to the gap between two planar surfaces, considering the
situation where the swimmers interact only through the
low-Reynolds-number hydrodynamics of the solvent. If
the number density of swimmers is n, one can define an
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FIG. 1. Bead-rod-dumbbell model of a swimmer. The flagel-
lum is represented by a force exerted on one of the beads of the
dumbbell, and a force in the opposite direction exerted by the
dumbbell on the fluid. The case p = 1 is shown.

204501-2



PRL 95, 204501 (2005)

PHYSICAL REVIEW LETTERS

week ending
11 NOVEMBER 2005

effective volume fraction of particles in the suspension as
¢, = mnt?/6[14]. Positions are nondimensionalized with
¢ and time with €/v,,. The domain is periodic with side L
in the directions x and y parallel to the walls, and the
distance between walls is 2H. The force balance on
bead 1 of each swimmer (neglecting inertia) is

Ff+Fh1+FC1:0' (1)

Here F; is the force exerted by the flagellum on the bead
and F_; is the force that enforces the rigid rod constraint.
The drag force F,; = —{[F; — v/(r;)], where r; is the
position of bead 1 and v/(r;) is the fluid velocity induced
at r; by the motions of all the beads of all swimmers, as
determined by solving Stokes’ equation, treating each bead
and flagellum as a point force. The equation of motion for
bead 2 is analogous, except that no flagellum is attached to
it. The hydrodynamic interaction computations (i.e., v/ at
the position of each bead) were performed using a fast
(N logN) method adapted [15] from Mucha et al. [16].

Figure 2 shows mean-squared displacement (MSD) in
the xy plane vs time for swimmers and non-Brownian point
particle tracers at two different concentrations, ¢, = 0.047
and 0.233. At the lower concentration the transport is
ballistic at short times, reflecting the straight-line swim-
ming of an isolated particle. At longer times a crossover to
diffusive behavior occurs, with the crossover time decreas-
ing and the breadth of the crossover region increasing as
concentration increases. At the higher concentration, the
crossover region is more than a decade wide, indicating a
region of apparently anomalous diffusion. The short- and
long-time scalings of the MSD are independent of box size
at constant concentration, as is the crossover time between
regimes, but the actual values of the long-time diffusivities
do indicate a dependence on the box size.

Figure 3 shows the effective long-time self-diffusion
coefficient of swimmers and passive tracers as a function
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FIG. 2. Mean-squared displacement vs time for non-Brownian
swimmer and tracer particles in suspensions of swimmers at
various concentrations. L = 15 and 2H = 5.

of ¢, for two different confinements. At low concentration,
the effective diffusivity is high because the swimmers
travel a long distance on a nearly straight path before the
weak hydrodynamic fluctuations can significantly alter
their trajectories. The flow is barely disturbed by the swim-
mers so tracers diffuse very slowly. As the concentration is
increased the diffusivity of the swimmers decreases, as
their naturally ballistic trajectories are increasingly per-
turbed by hydrodynamic interactions with other swimmers.
Correspondingly, the naturally motionless tracers increas-
ingly feel the motion of the swimmers, so their diffusivity
increases. An important transition occurs around ¢, =
0.3, where the diffusion coefficient of the swimmers begins
to increase with increasing concentration, and diffusion of
the tracers becomes comparable to that the swimmers. This
reflects the emergence of strong large-scale coherent mo-
tions in the flow, driven by the collective motion of the
swimmers. Figure 4 shows a snapshot of the velocity field
generated by the swimmers in a suspension with ¢, =
0.56 and 2H = 5. It is very similar to velocity fields
experimentally observed by Goldstein and co-workers
[5]. From this plot it is apparent that the size of the flow
structures is comparable to the wall separation 2H.

One of the most important consequences of confinement
of suspensions is that it can lead to migration of particles. It
is well known that suspended droplets and polymer mole-
cules move away from walls during shear flow [17,18]. The
fundamental mechanism behind this phenomenon is that
the stresslet flow induced by a point force dipole near a
wall induces wall-normal motion at the position of the
dipole [19,20]. A droplet or polymer molecule that has
extended in a shear flow has a stresslet with polarity p =
—1, which, when aligned parallel to a wall, leads to migra-
tion away from the wall. Conversely, a particle with a
stresslet of polarity p = 1 (e.g., a swimmer pushed by its
flagellum) will migrate toward the wall. Indeed a long-
standing observation is that mammalian spermatozoa mi-
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FIG. 3. Diffusion coefficient vs normalized concentration for
the swimmer and tracer particles. L = 15.
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FIG. 4. Snapshot of the velocity field at the midplane of the
channel for ¢, = 0.56, L = 15, and 2H = 5. Two periods in the
x direction are shown, one in the y.

grate toward solid surfaces [21]. Rothschild [21] argued
based on experiments that this effect is hydrodynamic, and
detailed simulations of a single flagellated swimmer near a
wall [22] predict motion of the swimmer toward the wall.

This motion is captured in our simple swimmer model.
Figure 5 shows the concentration profile across the channel
of swimmers at different average concentrations. As ex-
pected, at low concentrations the swimmers tend to move
toward the confining walls, resulting in peaks in the con-
centration profile near the walls—the very low density at
very small distances from the walls is simply due to the
steric exclusion of beads from the walls. Once the concen-
tration exceeds about ¢, = 0.3, a quite important and
unexpected phenomenon occurs: the sharp peaks near the
wall vanish, as the emergent large-scale flow mixes fluid
across the entire channel.

To summarize, many experimental observations of col-
lective motion in suspensions of swimming particles can be
captured by a very simple model of hydrodynamically

n/n

z/H

FIG. 5. Concentration profile as a function of wall-normal po-
sition z for different average concentrations. L =15 and 2H = 5.

interacting swimmers. The interacting particles display
superdiffusive behavior at short time scales with a cross-
over to classical diffusion that is a function of concentra-
tion. At sufficiently large concentrations, large-scale
coherent fluid motions emerge, leading to important
changes in the transport within the system.
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