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Kinetic Equation for a Dense Soliton Gas
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We propose a general method to derive kinetic equations for dense soliton gases in physical systems
described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral
distribution function of solitons due to soliton-soliton collisions. Owing to complete integrability of the
soliton equations, only pairwise soliton interactions contribute to the solution, and the evolution reduces to
a transport of the eigenvalues of the associated spectral problem with the corresponding soliton velocities
modified by the collisions. The proposed general procedure of the derivation of the kinetic equation is
illustrated by the examples of the Korteweg–de Vries and nonlinear Schrödinger (NLS) equations. As a
simple physical example, we construct an explicit solution for the case of interaction of two cold NLS
soliton gases.
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The concept of soliton plays a fundamental role in non-
linear physics due to its main property: preservation of its
parameters during interactions with other solitons in the
case of the physically and mathematically important class
of so-called integrable equations. Such a particlelike be-
havior has led to a huge number of investigations of soliton
dynamics in various physical systems (see, e.g., [1]) as well
as to thorough study of mathematical properties of inte-
grable (or soliton) equations (see, e.g., [2]) initiated in the
pioneering paper [3] where the famous inverse scattering
transform (IST) method has been formulated. In this
method, each soliton is parametrized by an eigenvalue �
of the linear spectral problem associated with the nonlinear
wave equation under consideration. For example, the
Korteweg–de Vries (KdV) equation

ut � 6uux � uxxx � 0 (1)

is associated with the linear Schrödinger equation

 xx � u�x; t� � ��
2 ; (2)

so that evolution of the potential u�x; t� according to (1)
does not change the spectrum �, and, whence, the proper-
ties of solitons do not change either. The IST method gives
a full explanation of finite-number solitons dynamics and
provides the basis for the description of many nonlinear
physics phenomena.

We encounter a different physical situation when we
have to deal with a dense lattice of solitons. When the
solitons in the lattice are correlated, they may form a
modulated nonlinear periodic wave. The spectral problem
(2) for a general periodic in x ‘‘potential’’ u�x; t� leads to
the Bloch band structure of the spectrum �. The periodic
‘‘soliton lattices’’ are distinguished by a finite number of
gaps in the spectrum (see [4]), and the edges �i of the
spectral gaps become convenient parameters in terms of
which the major physical characteristics of the wave such
as wavelength, frequency, amplitude, etc., are expressed. In
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a weakly modulated wave, the parameters �i become slow
functions of space and time coordinates, and their evolu-
tion is governed by the Whitham equations [5]. Methods of
derivation and integration of the Whitham equations are
now well developed, and this theory provides an adequate
description of such important phenomena as formation of
dispersive shocks (or undular bores) in various physical
systems from water surface to space plasma and Bose-
Einstein condensate.

Yet another principally different class of problems arises
when solitons form a disordered finite-density ensemble (a
soliton gas) rather than a well-ordered modulated soliton
lattice. The relevant physical conditions can be realized,
for instance, when a large number of solitons are generated
either by random large-scale initial distributions [6] or by a
stochastic external forcing (such as irregular topography in
the internal water wave dynamics) or when they are in-
jected into a ring resonator [7]. Here it is necessary to
introduce an appropriate kinetic description of the soliton
gas. We introduce a distribution function f�x; t;�� as the
number of solitons with the spectral parameter � in the
interval ��; �� d�� and in the space interval �x; x� dx� at
the moment t. Now, if the soliton dynamics is governed by
an exactly integrable equation, we arrive at the problem of
describing the isospectral evolution of the distribution
function f�x; t;�� with time. Since the spectrum � is
preserved, the evolution of f�x; t;�� must be governed by
the conservation equation

ft � �sf�x � 0; (3)

which means that the eigenvalues � are transferred along
the x axis with some mean velocity s�x; t;�� depending on
the distribution function f, but there is no exchange of �’s
between different � intervals. Hence, the problem is re-
duced to finding the velocity s of a soliton gas as a function
of �, x, and t. This problem was posed by Zakharov [8] as
early as 1971, and he solved it for the case of rarefied gas of
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KdV solitons. Only recently was it generalized in Ref. [9]
to the case of a dense gas of KdV solitons, where it was
found that velocity s�x; t;�� is determined from the integral
equation

s��� � 4�2 �
1

�

Z 1
0

ln

��������������

��������f����s��� � s����d�;
(4)

so that Eqs. (3) and (4) give a closed self-consistent kinetic
description of a soliton gas of an arbitrary density. In the
limit of rarefied gas, i.e., for

R
f���d�� �0, where �0 is

a characteristic value of the spectral parameter, the second
term in Eq. (4) becomes a small correction to the speeds
4�2 of noninteracting solitons, and the substitution of
s��� 	 4�2, �� � �;��, reproduces the Zakharov kinetic
equation [8].

Although a mathematically rigorous derivation of
Eq. (4) given in Ref. [9] (which is based on a certain
singular limit of the Whitham equations) is quite technical,
the final result is physically very natural and suggestive.
Indeed, Eq. (4) implies that only two-soliton collisions
have to be taken into account (which agrees with the
properties of multisoliton solutions of the KdV equation);
thus, in a collision of a � soliton (i.e., with the spectral
parameter �) with a � soliton, the coordinate of the �
soliton is shifted by the distance

1

�
ln

��������������

�������� for � > �;

(and there is a similar expression for � < �), and the
number of collisions per second is proportional to the
relative mean velocity �s��� � s���� of these two types
of solitons multiplied by the density of � solitons. Then,
after integration over the distribution function f��� of �
solitons, we arrive at Eq. (4) for the speed of � solitons
modified by their collisions with the other � solitons. It is
supposed that the number of soliton collisions over a large
distance is large enough, and, hence, the mean velocity s is
a well-defined variable. As a matter of fact, the typical x; t
scales in the kinetic equation are much larger than in the
original Eq. (1). Thus, one can see that the above simple
reasoning provides an independent derivation of Eq. (4) for
the KdV equation case and, obviously, it can be directly
applied to other integrable equations. In this Letter, we use
this method to derive the kinetic equation for a finite-
density gas of bright nonlinear Schrödinger (NLS) solitons
and infer some of its consequences.

As is known, each soliton solution of the focusing NLS
equation

iut � uxx � 2juj2u � 0 (5)

is characterized by a complex eigenvalue

� � �� i�; �1<�<1; 0<�<1; (6)

of the Zakharov-Shabat spectral problem and is given by
(see, e.g., [4])
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u�x; t� � 2i�
exp��2i�x� 4i��2 � �2�t� i�0�

cosh�2��x� 4�t� x0��
; (7)

that is, � � =��� determines the amplitude of the soliton
and � � <��� its velocity v � �4�. The multisoliton
solution shows that interaction of solitons reduces to only
two-soliton elastic collisions and effects of multisoliton
collisions are absent. In accordance with the above argu-
mentation, we consider a gas of solitons characterized by a
continuous distribution function of eigenvalues �. In other
words, f�x; t;�; ��d�d�dx is the number of eigenvalues in
the element d�d� of the complex plane � in the space
interval dx much greater than both typical soliton width

1=� and average distance between solitons. This distri-
bution function evolves due to motion of solitons, and, as a
consequence of preservation of the spectrum, it satisfies
again the continuity equation (3), which means conserva-
tion of the density of eigenvalues in a given element of �
plane. In this equation, s denotes mean velocity of �
solitons which should be evaluated with the account of
soliton collisions. Without interaction of solitons, it would
be equal to s��; �� � �4�. However, collisions of a �
soliton �� � �� i�� with other � solitons �� � �� i��
modify it in the following way. Each collision of a faster �
soliton with a slower � soliton shifts the � soliton forward
to the distance (see, e.g., [4])

1

2�
ln

���������� ��
���

��������
2

for s��; ��> s��; ��;

and the number of such collisions in the time interval dt is
equal to the product of the density f��; ��d�d� and the
distance overcame by faster � solitons compared with
slower � solitons, �s��; �� � s��; ���dt. Thus, such colli-
sions increase a path covered by a � soliton compared with
�4�dt. In a similar way, one can calculate the negative
shift due to collisions with faster � solitons. The total shift
is obtained by integration over d�d�. Equating paths
s��;��dt and�4�dt� “total shift”, we obtain an integral
equation for the self-consistent definition of the soliton gas
velocities,

s��; �� � �4��
1

2�

Z 1
�1

Z 1
0

ln

���������� ��
���

��������
2
f��; ��

� �s��; �� � s��; ���d�d�: (8)

Obviously, this derivation of Eq. (8) is correct as long as
the resulting velocity s��;�� is finite. Under this reserva-
tion, Eqs. (3) and (8) provide the basis for a consideration
of kinetic behavior of dense gas of NLS solitons.

As a simple application of the kinetic equations, let us
consider evolution of two beams of solitons, when the
spectral distribution gas consists of two monochromatic
(‘‘cold’’) parts:

f�x; t; �; �� � �1�x; t�	���� �;�� ��

� �2�x; t�	��� �;�� ��; (9)
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where �1�x; t� corresponds to fast (or moving to the right in
the reference system associated with the group velocity of
the carrier wave) solitons (�1 � ��� i�) and �2�x; t� to
slow (or moving to the left) solitons (�2 � �� i�). All
solitons have the same amplitudes. Of course, the idealized
delta-functional approximation for the distribution func-
tion in the kinetic equation means that the exact soliton
eigenvalues in the original spectral problem for the NLS
equation are distributed for the ith component within a
narrow vicinity of the dominant value � � �i and are
actually different, which precludes formation of bound
states. The soliton positions in such a ‘‘monochromatic’’
gas are statistically independent, which leads to Poisson
distribution for the number of solitons in a unit space
interval with the mean density �i [10]. It is also clear
that one can neglect interactions between the solitons
belonging to the same beam compared with the cross-
beam interactions.

Substituting (9) into (3) and (8), we obtain a ‘‘two-
beam’’ reduction of the kinetic equation,

@�1

@t
�
@�s1�1�

@x
� 0;

@�2

@t
�
@�s2�2�

@x
� 0; (10)

where the velocities of the beams s1 � s���;�� and
s2 � s��;�� are determined from the equations

s1 � 4�� 
�2�s1 � s2�; s2 � �4�� 
�1�s2 � s1�;

(11)

and the interaction parameter


 �
1

2�
ln
�
1�

�2

�2

�
(12)

is always positive. Resolving (11), we get expressions for
velocities in terms of �1;2�x; t�:

s1 � 4�
1� 
��1 � �2�

1� 
��1 � �2�
;

s2 � �4�
1� 
��1 � �2�

1� 
��1 � �2�
:

(13)

According to the formulated above condition of applica-
bility of the kinetic description, the densities must satisfy
the inequality


��1 � �2�< 1: (14)

Substitution of the inverse expressions for �1;2

�1 �
s2 � 4�

�s2 � s1�

; �2 �
s1 � 4�

�s1 � s2�

(15)

into the system (10) reduces it to the form

@s1

@t
� s2

@s1

@x
� 0;

@s2

@t
� s1

@s2

@x
� 0; (16)

which is known as the Riemann invariant form of
Chaplygin gas equations, which, besides the well-known
original application to compressible gas dynamics, have
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recently found a number of other applications. If solution
of the system (16) is known, then the densities �1; �2 are
determined in terms of s1; s2 by the formulas (15).

Although the system (16) admits the general solution
(see, e.g., [11]), we shall confine ourselves to a physically
natural problem of the collision (mixing) of slow and fast
soliton gases when two gases are separated at the initial
moment so that

�1�x; 0� � �10�x�; �2�x; 0� � 0 for x < 0; (17)

�1�x; 0� � 0; �2�x; 0� � �20�x� for x > 0; (18)

where �10�x�> 0 and �20�x�> 0 are given functions.
Corresponding initial data for the equivalent system (16)
follow from (13):

s1�x; 0� � 4�; s2�x; 0� � �4�
1� 
�10�x�
1� 
�10�x�

; (19)

for x < 0, and

s1�x; 0� � 4�
1� 
�20�x�
1� 
�20�x�

; s2�x; 0� � �4�; (20)

for x > 0. To further simplify the problem, we consider the
case when both gases are homogeneous, i.e., �10�x� � �10,
�20�x� � �20, where �10 and �20 are constant. Since in this
case neither the initial conditions nor the evolution equa-
tion (16) contain any parameter with dimension of length,
the solution must be self-similar and depend on the vari-
able x=t alone. However, as can be easily seen, the sys-
tem (16) does not possess nonconstant similarity solutions.
On the other hand, the solution consisting of two constants
s1; s2 cannot satisfy the discontinuous initial conditions
(19) and (20). As in shock wave theory [5], this can be
remedied by introducing admissible discontinuities in the
solution. The discontinuous ‘‘weak’’ solutions are allowed
here owing to the presence of the conservation laws (10)
and (13). As a result, the sought solution has the form of
three constant states ff1; f2g: f�10; 0g; f�1c; �2cg; f0; �20g
separated by two jump discontinuities.

We denote the velocities of the discontinuities as c� ,
c� < c�. Then the solution is (i) x < c�t:

�1 
 ��1 � �10; �2 
 ��2 � 0; (21)

which implies by (13)

s1 
 s�1 � 4�; s2 
 s�2 � �4�
1� 
�10

1� 
�10
; (22)

(ii) x > c�t:

�1 
 ��1 � 0; �2 
 ��2 � �20; (23)

which implies

s1 
 s�1 � 4�
1� 
�20

1� 
�20
; s2 
 s�2 � �4�: (24)

The values s�2 and s�1 can be viewed as velocities of trial
1-3
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FIG. 1. Dependence of soliton densities on space coordinate x
at some moment t; �10 and �20 are the densities of solitons in the
beams propagating to the left and to the right, correspondingly;
�1c and �2c are the densities of the same beams in the overlap
region.
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solitons of one component moving through the homoge-
neous gas of solitons of another component. One can see
that there are critical values for the densities �10 � 
�1

and �20 � 
�1 yielding the infinite speeds for trial soli-
tons. In accordance with the restriction described above,
we assume 
�10 < 1, 
�20 < 1.

(iii) c�t < x < c�t: Let �1 
 �1c; �2 
 �2c in this in-
teraction zone. Then the four unknown values
�1c; �2c; c

�; c� are found from the jump conditions con-
sistent with the physical conservation laws (10) (see, for
instance, [5]):

�c���1c � ��1 � � ��1cs1c � ��1 s
�
1 � � 0;

�c���2c � �
�
2 � � ��2cs2c � �

�
2 s
�
2 � � 0;

(25)

�c���1c � ��1 � � ��1cs1c � ��1 s
�
1 � � 0;

�c���2c � �
�
2 � � ��2cs2c � �

�
2 s
�
2 � � 0:

(26)

Here

s1c � 4�
1� 
��1c � �2c�

1� 
��1c � �2c�
;

s2c � �4�
1� 
��1c � �2c�

1� 
��1c � �2c�
:

(27)

In view of (21) and (23), it readily follows from (25) and
(26) that c� � s2c and c� � s1c. Then �1c, �2c are found
from the same equations with the account of (21) and (23),
as

�1c �
�10�1� 
�20�

1� 
2�10�20

; �2c �
�20�1� 
�10�

1� 
2�10�20

: (28)

Correspondingly, substitution of (28) into (27) yields the
velocities of expansion of the interaction region

c� � s2c � �4�
1� 
�10

1� 
�10
;

c� � s1c � 4�
1� 
�20

1� 
�20
;

(29)

and this completes the solution. As one should expect,
these velocities coincide with velocities s�2 and s�1 of the
trial solitons [see Eqs. (22) and (24)]. Thus, we have found
boundaries x � c�t of the interaction region and densities
�1c, �2c of the two components of soliton gas in this
region. In particular, the obtained solution in view of (14)
implies that the following inequality is satisfied:

F��1c; �2c� �
�1c � �2c

�10 � �20
�

1� 2
�10�20

�10��20

1� 
2�10�20

< 1: (30)

It means that the total density in the interaction (mixing)
zone is always less than the sum of densities of individual
separated components.
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The process of the collision of two soliton gases is
illustrated in Fig. 1. Because of the interaction of solitons
with each other, the overlap region spreads out faster than it
would without taking into account the phase shifts caused
by two-soliton collisions, and the kinetic equation allows
one to give a quantitative description of this effect.

In conclusion, we have obtained the kinetic equation
describing the evolution of the spectral distribution func-
tion of a dense gas of uncorrelated NLS solitons. The
proposed procedure of the derivation can be generalized
to whole Ablowitz-Kaup-Newell-Segur hierarchy and to
other integrable hierarchies. A process of interaction of
two cold NLS soliton gases is studied in detail.
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