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Quantum-Noise-Initiated Symmetry Breaking of Spatial Solitons
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(Received 11 May 2005; published 7 November 2005)
0031-9007=
The spectra of ��2� spatial solitons are measured close to the soliton-formation threshold and show the
presence of sidebands, shifted by 39 THz from the laser line. By comparing with the predictions of a
quantum optical field model, solved numerically in the full (3� 1)-dimensional space, it is claimed that
the observed temporal instability of the spatial soliton is seeded by vacuum state fluctuations of the
electromagnetic field.
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The breakup or collapse of a macroscopic order parame-
ter, or mean field, is one of the more dramatic effects
caused by quantum fluctuations. By its very nature it
implies intrinsic instability even under conditions of opti-
mum experimental purity. The initiation of a mean field
breakup is, however, often masked by the difficulty in
clearly establishing the quantum origins of the process: a
pencil balanced on its point may be induced to fall by
quantum-noise, but once it tips, the fluctuation’s origin is
lost in an essentially classical collapse [1,2]. In this Letter
we report experimental and theoretical investigations of
quantum-noise-initiated temporal breakup of a macro-
scopic coherent spatial structure: an optical soliton self-
localized in two transverse spatial dimensions in a non-
linear medium. Specifically, we experimentally measure a
symmetry breaking instability in the temporal dimension
of the spatial solitary wave, induced by zero point fluctua-
tions of the electromagnetic vacuum.

The general problem of soliton symmetry breaking or
modulational instability (i.e., the instability with respect to
a perturbation in a spacetime dimension other than those in
which the soliton is localized) was initially formulated in a
classical context for the nonlinear Schrödinger equation by
Zakharov [3]. In this Letter we discuss soliton generation
via second harmonic generation in a ��2� bulk medium
[degenerate three wave mixing (DTWM) in the normal
dispersion regime]. The symmetry breaking of 1D ��2�

solitons, or solitary waves, was discussed theoretically by
Kanashov and Rubenchik [4], and a prediction of symme-
try breaking for 2D ��2� spatial solitons in DTWM was
made by De Rossi et al. [5]. From the latter work, one
expects to observe a narrow band, regular, temporal modu-
lation of the 2D soliton, characteristic of modulational
instability. To our knowledge, no experimental evidence
of such temporal modulation, or measurements of the
spectral profile of 2D ��2� spatial solitons has been reported
previously [6]. To observe this effect it is favorable to work
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in the regime of positive wave vector mismatch, since for
negative mismatch Skryabin [7] has shown, for the case of
1D spatial solitons, that overlapping instability branches
lead to a broadband gain profile. In that case, as well as in
the case of instabilities excited in parametric down con-
version, one should expect a chaotic breakup of the wave
packet in the spatiotemporal domain [8], completely differ-
ent from the situation studied here, namely, that of genuine
symmetry breaking of a spatial object in the temporal
domain.

While the observation of a temporal instability of a 2D
spatial soliton is novel even in a completely classical
context, we contend that the observed breakup is initiated
by quantum noise. As a matter of principle it is, therefore,
unavoidable. It is usually the case that observed modula-
tional instabilities are seeded by classical noise, perhaps
due to residual stochastic fluctuations of the input laser
field, or imposed by some technical laboratory source. In
addition to such noise, quantum fluctuations of the vacuum
are always present, but this is a source which is often
considered harmless for high intensity light fields. The
peculiarity of our DTWM experiment is that the chosen
boundary conditions force the instability to appear in a
spectral region where classical noise should be readily
excluded. The good agreement between the experimental
results and the predictions of a quantum optical model
further supports our claim.

The experiment has been designed to capture the growth
of frequency sidebands in the soliton temporal spectrum
near the soliton-formation threshold, and to precisely mea-
sure their energy content in order to allow comparison with
model predictions. A 1.2 ps FWHM duration, 32 �m
FWHM diameter, 1055 nm wavelength optical pulse de-
livered by a chirped-pulse amplified Nd:glass laser
(TWINKLE; Light Conversion Ltd.) was launched into a
30 mm lithium triborate (LBO) crystal, where spatial
solitons are formed owing to the interaction between the
input fundamental (FH) and generated second harmonic
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(SH) fields. The input-beam waist was placed at the crystal
input facet, and the pulse energy varied in the 0–1 �J
range. The crystal temperature was kept at 166.4 �C, sup-
porting noncritical phase matching with small, positive,
phase mismatch (�5 cm�1).

The experimental diagnostic consisted of three different
apparatus: (i) a 12-bit CCD detector with 4x magnifying
optics was adopted for recording the FH and SH beam
profiles at the crystal output facet, as required for identify-
ing the occurrence of the soliton regime. (ii) A spectro-
graph configured as scanning monochromator was used for
detecting the blue-shifted sideband spectral profile. To this
end the LBO crystal output facet was imaged (with 4�
magnification) onto the entrance slit of the spectrograph,
whose aperture was set to 1 mm in order to accept the entire
beam and to make negligible any beam-wandering effect.
This setting limited the spectral resolution to 10 nm. The
acquisition was performed by means of low-noise photo-
diodes. (iii) Finally, by opening the spectrograph output slit
to 4 mm (spectral width: 40 nm, corresponding to ’15 THz
at 930 nm), virtually the entire sideband energy was re-
corded on the photodiode for a single grating position, as
we have verified by further increasing slit aperture. This
setting was used to record the ratio between the blue-
shifted-sideband energy, ESB, centered at 930 nm, and
the energy of the residual output FH, EFH, i.e., that con-
tained in the same 40 nm bandwidth centered at 1055 nm.
The red-shifted sideband, centered at 1219 nm, was not
recorded.

Figure 1(a) shows the FH output-beam FWHM diame-
ters vs the threshold-normalized input-pump energy, Ep=
ETH. The trend, similar to that shown in Ref. [9], demon-
strates the occurrence of the spatial-soliton regime; ETH,
defined as the pump energy with the minimum FH output
diameter, occurred for Ep � 0:44 �J. Figure 1(b) presents,
in arbitrary units, the measured spectra (FH branch, blue-
shifted side) for four different input energies close to the
soliton-formation threshold. The results clearly outline the
emergence of a well-defined frequency sideband in the
FIG. 1 (color online). Experimental results. (a) FWHM diame-
ter of the FH output-beam vs threshold-normalized input-pump
energy, Ep=ETH; (b) spectral-density profiles of the blue-shifted
sidebands close to soliton-formation threshold; (c) dependence
of the fractional blue-sideband energy, ESB=EFH, on normalized
pump energy. The (60 000) scattered points represent measured
data, while the squared symbol result from data averaging over
0:25 GW=cm2 windows. The two branches of the curve were
obtained with two sets of neutral-density filters, in order to cover
the largest possible dynamic range.
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temporal spectrum, which proves the occurrence of
spatial-soliton instability in the temporal domain. The
above-threshold sidebands have a width (at 1=10 of their
peak) of ’15–20 THz, and are peaked at ’ 39 THz from
the pump. We note that our Nd:glass laser has a stretcher
and compressor, which ensure a sharp laser noise cutoff of
less than 2 THz for the input pulses. To assess whether the
residual classical noise could be responsible for the ob-
served instability, we use Eqs. (1) and (2) supplemented by
an Ornstein-Uhlenbeck model of laser phase noise speci-
fied by two frequency parameters b and � [10]. We do not
expect that the qualitative results should depend sensitively
on the model. Furthermore, to account for the stretcher and
compressor we numerically filter out frequencies above
2 THz. The results of simulations in the threshold region
are shown in Fig. 2 for a range of noise parameters leading
to the appearance of sidebands. Under conditions where
laser noise broadening could produce near-threshold side-
bands, the sideband energies are several orders of magni-
tude larger than those observed experimentally. Moreover,
they appear without the distinctive spectral gap between
sidebands and pump. In this scenario, excluding laser
noise, quantum noise emerges as the key factor that trig-
gers the observed spatial-soliton temporal instability, via
the very efficient coupling supported by the ��2� interac-
tion. As to possible contributions of Kerr or Raman-driven
instabilities, which might grow in principle as a conse-
quence of the same quantum-noise seeding, it should be
noted that they would have a much weaker gain than the
��2� process. Spontaneous Raman photons, with a Stokes
shift in the tens of THz range could be amplified by the ��2�

interaction in the same manner as the vacuum input; how-
ever, this process also has a distinctly quantum origin: the
disappearance of a pump photon results in the appearance
of a real Stokes photon in a previously unoccupied (vac-
uum) field mode. Figure 1(c) gives the measured sideband-
energy content, ESB=EFH. The results show that the spatial
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FIG. 2 (color online). Theoretical spectra, S�!� �R
dxdyS�!; x; y�, computed for pump energy Ep=ETH � 1:1,

showing the emergence of sidebands caused by classical laser
noise. The noise parameters are given by b=2� � 0:4 THz,
�=2� � 2:0 THz (dotted line), b=2� � 1:0 THz, �=2� �
1:0 THz (dashed line) and b=2� � 1:2 THz, �=2� � 2:0 THz
(solid line).
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soliton exhibits temporal modulation already at its forma-
tion threshold, and ESB=EFH takes a value of ’10�5 for
Ep=ETH � 1:1. Note that the first slope change around
threshold is linked to the abrupt change in beam width
and therefore to the effective pump intensity; the second, at
Ep=ETH � 1:2, is where saturation occurs.

We compute the quantum features of the instability
using the methods of quantum optics. The Heisenberg field
equations can be obtained by quantization of the classical
field theory for DTWM [11–13]. The idea is then to recast
these operator equations into stochastic partial differential
equations using the Wigner function representation. The
use of such an approach in nonlinear optics has been
pioneered by Drummond and coworkers [12–15]. A simi-
lar approach in the context of Bose-Einstein condensation
has also been advocated [16,17]. With respect to previous
work, the novelty of our calculations is that they are fully
3� 1 dimensional, taking into account the strong spatial
and temporal reshaping of the coupled light fields and
quantum fluctuations during propagation. We also account
for the dominant effect of group velocity mismatch which
was not considered in earlier theoretical and numerical
discussions [5]. Details of the theory will be discussed
elsewhere, and below we will summarize only the essential
features. The essence of the model is that we make a
Wigner function truncation approximation so that it re-
duces to the classical propagation equations and initial
conditions that include noise whose properties are entirely
determined by the quantum field theory.

The equations of motion are simplest in a frame comov-
ing at the group velocity vg1 of FH, where in terms of
laboratory space time coordinates (X, Y, Z, T) we define
local coordinates, zv � Z, tv � T � Z=vg1. Furthermore,
we normalize the equations through transformations to di-
mensionless variables: x � �X; Y�=r0 � X=r0, � � tv=t0,
� � zv=z0, and �� � ��=F0, where �� is the photon
flux field in the Wigner representation analogous to the
photon flux Heisenberg operator �̂�. The characteristic
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where s1� sgn�k�1�000 �, s2�k
�2�00
0 v2

g2=�jk
�1�00
0 jv2

g1�, the group
velocity mismatch �� z0�1=vg1�1=vg2�=t0, and the

phase mismatch 	k � �2k�1�0 � k
�2�
0 �z0. We assume the

quantized field incident on the input face of the crystal,
� � 0, is a coherent state. In the Wigner representation,
this coherent initial condition is represented by a classical
field with a superposed white noise as in Refs. [13,15]; ex-
plicitly, �� � �0

� � 	�� where the noise, 	����; �; r�,
is a Gaussian random noise with zero mean whose corre-
lations are fixed by the nonzero equal space commutation
relations at � � 0, [1 � ��1;x1�, etc.]

	���1�	��
�2��
1

2 �n

vg�
vg1

	�
	�x1�x2�	��1��2� (3)

where �n � �2
0r

2
0t0 is a characteristic photon number.

We must recall that in using the Wigner function
method, ensemble averages correspond to symmetrically
ordered expectation values. For example, the FH space-
frequency spectrum, S1�!;x�, is the Fourier transform of
the normally ordered quantity h�̂y1 �t1;X��̂1�t2;X�i. In
Wigner representation this is, up to a constant, the en-
semble average of j�1�!;x�j2 minus the limit of Eq. (3)
(� � 1) as x1 ! x2 and �1 ! �2. Here ! � �t0 is a
dimensionless frequency, and ���!;x� is the Fourier
transform of ����;x�. In practice all delta functions are
regularized numerically as Kronecker delta symbols on the
lattice.

The numerical calculations were carried out on a three
dimensional spatiotemporal grid of size L�LxLy with
N�NxNy points, and the values updated as the field prop-
agates in the � direction [18] with a step size small enough
to ensure convergence 	� � 0:04. The quantum-noise in-
put was treated by assigning independent noise to each
point on the grid; for this reason the calculations are
necessarily 3� 1 dimensional. The variance of the noise
on each grid point is thus proportional to 1=�V where
�V � L�LxLy=N�NxNy is the volume element associated
with each grid point. The procedure is equivalent to adding
noise equal to ‘‘half a photon’’ to each temporal frequency
and spatial wave number below a cutoff value fixed by
kmax
i � �Ni=Li. Grid parameters are chosen to ensure that

in both real and Fourier space boundary reflection effects
may be ignored. The numerical calculations assumed the
following physical parameters ��2� �1:7�10�12 mV�1,
��1055 nm, n1�1:604, 1=vg1�1=vg2��4:7�

10�11 s=m, 2k�1�0 �k
�2�
0 �500m�1, k�1�000 �1:7�10�26 s2=m,

k�2�000 � 8:9� 10�26 s2=m. We assume a FH Gaussian in-
put beam with radial full width at half maximum (FWHM)
w0 � 35 �m, and temporal FWHM tp � 1 ps. The peak
intensity I0 was varied up to values of tens of GW=cm2.
The grid parameters are Lx � Ly � 28:125w0=r0, L��
6tp=t0 and Nx � Ny � 144, N� � 768.

Figure 3 summarizes the numerical results. The calcu-
lated output-beam diameters vs Ep=ETH are presented in
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FIG. 3. Numerical results. (a) FWHM diameters of the FH
output beams, vs threshold-normalized input-pump energy,
Ep=ETH; (b) The spectrum of the FH field at the origin,
S��!;x�0;y�0�=max!;�S��!;x�0;y�0�, for Ep=ETH�

1:1. The spectrum is an average over N � 8 sample paths.
(c) dependence of the fractional blue-sideband energy, ESB=EFH,
on normalized pump energy. (d) magnified image of (a) over the
same intensity range as (c). The calculations were limited to
Ep=ETH � 1:1 due to memory limitations.
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Fig. 3(a), where ETH � 0:28 �J. By accounting for the
given diameters and pulse durations, one obtains
Pexpt=Ptheory � 1:32 for the ratio between measured and
calculated threshold powers. Furthermore, comparing the
experimental [Fig. 1(a)] and calculated [Fig. 3(a)] output-
beam diameters one should also notice the more abrupt
dependence on pump energy, and the 1.45 times smaller
diameter of the soliton at threshold, in the experimental
case. These effects suggest the crystal has surface and/or
bulk imperfections leading to linear and nonlinear spatial
modulation of the input beam which are not included in the
theory. On further testing we observed such beam distor-
tions in the linear regime, and found a 30% change in the
threshold power using a nominally identical crystal bor-
rowed for testing purposes. Figure 3(b) shows the calcu-
lated FH spectral profile for Ep=ETH � 1:1, which exhibits
well-defined blue and red-shifted sidebands. The sidebands
result from the amplification of vacuum fluctuations, and
we have verified their absence in calculations in which this
noise is set to zero. The sidebands have a width (at 1=10 of
their peak) of ’ 18 THz, in good agreement with the
experiment. The frequency shift �� � 30 THz, leading
to ��expt=��theory � 1:3. This discrepancy can be readily
understood if one considers that, at threshold, one should
expect Iexpt=Itheory � 2:8 for the ratio between soliton in-
tensities, owing to the 1.32 times higher input power and
the 2.1 times smaller output-beam area in the experiment.
From the I���4 approximate scaling deduced from
Eqs. (1) and (2) (in the limit of � � 0 and 	k � 0) one
obtains ��expt=��theory � 1:29. Figure 3(c) reports the
calculated dependence of the output blue-sideband energy
ESB=EFH relative to the pump component, in the vicinity of
the soliton threshold. These energies were obtained by
integrating the calculated FH field over appropriate aper-
tures in direct and Fourier space. The results give
ESB=EFH ’ 5� 10�6 � 2� 10�5 within 10% of the soli-
ton threshold. These values are in good qualitative agree-
20390
ment with the measured ones, given the uncertainty in
system parameters.

In summary, we have captured the appearance of fre-
quency sidebands in the spectra of ��2� 2D-spatial solitons
near threshold. The result provides the first experimental
confirmation of the temporal instability of ��2� spatial
solitons as predicted in Refs. [4,5]. By solving a quantum
optical model that accounts for quantum field fluctuations,
pump depletion, and diffraction/dipersion in 3� 1 dimen-
sions we obtain very good agreement between experiment
and theory for sideband widths, frequencies, and energy
content, if the pump power is scaled to the soliton-
formation threshold. These results strongly support the
contention that the instability seeding mechanism is quan-
tum field fluctuations.
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