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Simulating Nonequilibrium Quantum Fields with Stochastic Quantization Techniques
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We present lattice simulations of nonequilibrium quantum fields in Minkowskian space-time. Starting
from a nonthermal initial state, the real-time quantum ensemble in (3� 1) dimensions is constructed by a
stochastic process in an additional (5th) ‘‘Langevin-time.’’ For the example of a self-interacting scalar
field, we show how to resolve apparent unstable Langevin dynamics and compare our quantum results
with those obtained in classical field theory. Such a direct simulation method is crucial for our under-
standing of collision experiments of heavy nuclei or other nonequilibrium phenomena in strongly coupled
quantum many-body systems.
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Nonequilibrium quantum field theory is the tool to
understand a large variety of topical phenomena in high-
energy particle physics, cosmology, as well as condensed
matter physics. Current and future collision experiments of
heavy nuclei involve far-from-equilibrium dynamics for
strongly interacting matter described by quantum chromo-
dynamics (QCD). Other experiments, which have attracted
much interest recently, concern the dynamics of ultracold
quantum gases. Though these involve length scales many
orders of magnitude larger than QCD, they require similar
quantum field theoretical techniques.

For out-of-equilibrium calculations, standard approxi-
mation techniques, such as perturbation theory, are not
uniform in time and fail to describe thermalization. There
has been substantial progress in our analytical understand-
ing of nonequilibrium quantum fields using n-particle
irreducible functional integral techniques [1]. However,
nonequilibrium truncations are difficult to test for crucial
questions of QCD or near a Feshbach resonance in atomic
media, i.e., where strong interactions play an important
role. Direct simulations on a space-time lattice could boost
our knowledge and trigger the development of further
approximate analytical tools.

Despite the importance of nonperturbative lattice simu-
lation techniques in out-of-equilibrium quantum field the-
ory, these have not been developed so far. This is in sharp
contrast to well-established thermal equilibrium methods
[2]. Equilibrium calculations can typically be based on a
Euclidean formulation, where the time variable is analyti-
cally continued to imaginary values. By this, the quantum
theory is mapped onto a statistical mechanics problem,
which can be simulated by importance sampling tech-
niques. Nonequilibrium problems, however, are not ame-
nable to a Euclidean formulation. Moreover, for real times
standard importance sampling is not possible because of a
nonpositive definite probability measure. Efforts to cir-
cumvent this problem include considering the computer-
time evolution in Euclidean lattice simulations [3,4]. A
problem in this case is to calibrate the computer time
independently of the algorithm.
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In this Letter, we present a nonequilibrium quantum
field theory simulation in Minkowskian space-time. The
quantum ensemble is constructed by a stochastic process in
an additional ‘‘Langevin-time’’ using the reformulation of
stochastic quantization [5,6] for the Minkowskian path
integral [7,8]: The quantum fields are defined on a
(3� 1)-dimensional physical space-time lattice, while
the updating procedure employs a Langevin equation
with a complex driving force in a 5th, unphysical ‘‘time’’
direction. Nonequilibrium dynamics is implemented by
specifying an initial state or density matrix, which deviates
from thermal equilibrium. For the example of a relativistic
scalar field theory with quartic self-interaction, we com-
pute the time evolution of correlation functions and con-
sider the characteristic damping rates.

Though more or less formal proofs of equivalence of the
stochastic approach and the path integral formulation have
been given for Minkowski space-time, not much is known
about the general convergence properties and its reliability
beyond free-field theory or simple examples in equilibrium
[8]. Much more advanced applications concern simulations
in Euclidean space-time with nonreal actions [9,10], where
standard Monte Carlo methods do not work. Despite suc-
cessful examples, major reported problems concern un-
stable dynamics and incidences of apparent convergence
to unphysical results [9–12].

To our knowledge, the approach has not been used to
simulate nonequilibrium quantum field theory before,
though some properties seem to make it quite suitable for
that. First, nonequilibrium requires specification of an
initial state or density matrix. Therefore, the initial con-
figuration is fixed, which seems to stabilize the procedure.
Moreover, the additional averaging over an initial density
matrix can help to achieve fast convergence. Second, one
typically has a good guess for the (3� 1)-dimensional
starting configurations of the Langevin updating proce-
dure: In contrast to the quantum theory, the corresponding
classical statistical field theory can be simulated using
numerical integration and Monte Carlo techniques [1].
Using the nonequilibrium classical statistical solution as
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the starting configuration can improve convergence. It also
provides a crucial check of the quantum result in some
limiting cases: For sufficiently large macroscopic field or
occupation numbers, classical dynamics can provide a
good approximation [1].

For our example, we observe good convergence proper-
ties of the quantum simulations, which is a remarkable
result. For given initial field configurations at time t � 0,
very different starting configurations for the (3� 1)-
dimensional space-time lattice converge to the same non-
equilibrium dynamics for all t > 0. To obtain this, we had
to resolve the problem of possible unstable dynamics for
the updating procedure, as is described in detail below. We
compare our quantum results with those obtained for the
corresponding classical theory for the same initial condi-
tions and lattice regularization. We indeed find agreement
in those cases where this is expected and observe increas-
ing deviations for smaller fields or occupation numbers. In
the following, we describe the relevant theoretical ingre-
dients and present the numerical evidence.

Nonequilibrium quantum field theory can be described
by the generating functional for correlation functions [1]:
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The path integral (1) displays the quantum fluctuations for
a theory with Lagrangian L and the statistical fluctuations
encoded in the weighted average with the initial-time
density matrix ��’1; ’2�. Here TC denotes contour time
ordering along a closed path C starting at t � x0 � 0 withR
C �

R
C dx

0
R
ddx (usual time ordering along the forward

piece C� and antitemporal ordering on the backward piece
C�). The initial fields are fixed by ’1�x� � ’�0�;x� and
’2�x� � ’�0�;x�. Nonequilibrium correlation functions,
i.e., expectation values of Heisenberg field operators ��x�,
are obtained by functional differentiation. The two-point
function, e.g., is
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�2Z�J;��

i�J�x�i�J�y�
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with all time arguments on C� such that TC corresponds
to standard time ordering T. In the following, we consider
physical correlation functions, which have their argu-
ments on C�. The role of C� is then only to normalize
Z�J � 0;�� � 1 with Tr� � 1.

Complex Langevin.—The complex exponential weight
in (1) requires a simulation technique which is not based on
a probability interpretation. Stochastic quantization refor-
mulated for real times [7,8] can provide such an approach.
The stochastic process is described by a Langevin-type
equation, which for a real quantum field theory governs a
complex field� � �R � i�I. The appearance of an imagi-
nary part reflects the fact that, in the quantum theory, the
field picks up a phase by evolving in time. In addition to the
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space-time variable x, the field depends on the Langevin-
time parameter # with [7,13]
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Here �S=�’j’!� � ����m2�� ��3 for a scalar
theory with mass m and self-interaction �. In general, the
real and imaginary parts of the Gaussian noise term � �
�R � i�I can be both nonvanishing [8], and the different
choices may be used for optimizing convergence. We
consider �I � 0, with h��x;#�i� � 0 and

h��x;#���x0;# 0�i� � 2��x� x0���# � # 0�; (4)

where h. . .i� indicates average over the noise.
The stochastic process (3) is associated to a distribution

P��R;�I;#�, and averages of observables A��� are given
as area integrals in the complex field plane:
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HerePeff��R;#� �
R
�d�I�P��R � i�I;�I;#�, where the

shift in the integration variable �R ! �R � i�I for the
second equality in (5) is assumed to hold. The complex
pseudodistribution Peff��R;#� is indeed governed by the
analytic continuation of the Fokker-Planck equation to real
times, which admits the stationary solution [7,8]
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#!1
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Thus, the approach can, in principle, be used for a
Minkowskian theory such as (1), with ‘‘ensemble’’ aver-
ages calculated as averages along Langevin trajectories.

Numerical simulation.—We consider N3
sNt lattices with

anisotropic space-time discretization a and at. Because of
the Courant condition, stable dynamics requires a=at �
� >

���
d
p

. The Langevin-time discretization is �#. In terms
of lattice variables �̂ � a�, m̂ � am, x̂ � x=a, t̂ � t=at,
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the discretized Eq. (3) in Itô calculus reads
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Here �� is the (anisotropic) lattice d’Alembertian [14]:

���̂�x̂� � �2��̂�x̂� ê0� � �̂�x̂� ê0� � ct�̂�x̂��

�
X
i

��̂�x̂� êi� � �̂�x̂� êi� � 2�̂�x̂��; (9)

with ct � 2 for 1< t̂ < Nt � 1 and cNt�1 � 1 for free
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FIG. 1. ReC�t̂� vs t̂ for a free-field theory with mass m̂ �
2:315. The Langevin evolution, shown for # � 0–9 in units of
a2, converges to the correct result with period 2��=m̂.
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FIG. 2. ReG�t̂� vs t̂ for the interacting theory with � � 1. As
starting configuration (# � 0) the classical result is taken, and
the Langevin updating incorporates quantum corrections.
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FIG. 3. Same nonequilibrium initial condition as in Fig. 2 but
null starting configuration for the Langevin updating.
Comparison demonstrates the start independence of the result.
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large-t̂ boundary conditions (no coupling to t̂ � Nt). In this
case, we consider �̂�t̂ � 1; x̂� � �̂�t̂ � 2; x̂� � �̂class�t̂ �
1; x̂� to set the initial conditions. Below, we will also use
cNt�1 � 2 for fixed large-t̂ boundary conditions in the case
of a noninteracting field for comparison, and we set �̂�t̂ �
1; x̂� � 1 and �̂�t̂ � Nt; x̂� � 0. The classical field con-
figurations �̂class�t̂; x̂� have been obtained by numerically
solving the classical field equations and sampling over
initial conditions, with nonzero field average and
Gaussian fluctuations [1]. Spatial periodic boundary con-
ditions are used.

Here we speak of ‘‘initial’’ configuration, referring to the
physical time, and of ‘‘starting’’ configuration for the
Langevin process. As starting configurations, the classical
solution, i.e., �̂�t̂ > 1; x̂; #̂ � 0� � �̂class�t̂ > 1;x�, or the
‘‘null’’ configuration �̂�t̂>1;x;#̂�0��0 are employed.
The figures are for a 8
 8
 8
 20 lattice with � � 4
based on 106 updatings with � � 10�5 (	2 h vector pro-
cessor time). Error bars are statistical and only indicative.

In the following, we present results for the two-point
function (2). In Fig. 1, the correlator

C�t̂� �
�

1

N3
s

X
x̂

�̂�1; x̂��̂�t̂; x̂�
�

(10)

for a free field of mass m̂ � 2:315 is shown for fixed
boundary conditions with zero momentum initial configu-
ration. h. . .i denotes average along the Langevin trajecto-
ries [15]. Shown are snapshots of ReC�t̂� for Langevin-
time parameter #̂ � 0–9, with null start configuration. The
evolution in #̂ exhibits slowly damped oscillations [16],
converging to the free-field result with the correct t̂ period
of 2��=m̂.

The unequal-time correlator (10) measures the correla-
tion of the field at time t̂ with the initial field. It gives
important information about the characteristic time scale
for the loss of details about the initial conditions. In con-
trast to the free-field behavior, the interacting theory has a
finite characteristic damping time. This is demonstrated in
Fig. 2, which shows the connected part
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for � � 1 and m̂ � 0. In Fig. 3 a different starting con-
figuration is considered for the same �̂class�1; x̂� initial
condition as in Fig. 2. The same data is presented as a
function of the Langevin-time #̂ in Fig. 4 to see the
convergence. For these parameters, one expects moderate
quantum effects. In runs with larger coupling or smaller
field, we find that the Langevin updating incorporates
increasing quantum corrections. Accordingly, one ob-
serves larger deviations compared to the classical starting
configuration.

In these simulations with � � 10�5, we encounter in-
cidences of unstable Langevin dynamics (see also [11]).
Their appearance depends on the random number and they
are strongly suppressed by using a smaller step size, which
indicates that they are artifacts of the discretization. To
cope with them, we used methods (1) backstepping on the
trajectory some thousands of steps (about 0.1 in #̂) and
restart with a new random number and (2) regularizing the
process by a small imaginary mass (about 10�4=a) in the
action. Both methods worked quite well. In Fig. 3 triangles
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FIG. 4. ReG�t̂� vs #=a2 at t̂ � 3 (squares), 6 (circles), and 10
(diamonds), for classical (open symbols) and null (solid sym-
bols) starting configurations. Initial conditions as in Fig. 2.
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indicate the backsteppings with regularization for the null
start. For � � 10�6 we practically could eliminate the
‘‘runaway’’ trajectories on runs of the same #̂ length (but
tenfold computer time).

Two procedures can be employed for further tests, which
are beyond the scope of this Letter. First, one can compare
to analytical approximations based on higher n-particle
irreducible effective actions [1]. Second, going to suffi-
ciently late times one can compare to certain thermal
equilibrium results from Euclidean simulations.

The numerics can be optimized by using improved
space-time derivatives and Langevin algorithms. A more
systematic study of the convergence problems and of the
associated ‘‘Fokker-Planck’’ equation also has to be done.
This also includes volume, lattice discretization, and step
size dependence, which lead to systematic effects [5–12].

We have demonstrated the possibility of first-principles
simulations in nonequilibrium quantum field dynamics.
The range of potential applications is enormous. It may
be used for out-of-equilibrium as well as Minkowskian
equilibrium properties extracted at late times. The scalar
theory considered here extended to two components is
already relevant for the dynamics of Bose condensates.
Possible applications to QCD require implementation in
a non-Abelian gauge theory, which is work in progress.
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[8] H. Hüffel and H. Rumpf, Phys. Lett. B 148, 104 (1984);
E. Gozzi, Phys. Lett. B 150, 119 (1985); H. Hüffel and
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