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What Makes a Boundary Less Accessible
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For the growth and transport processes driven by Laplacian fields, the accessibility of an interface for
Brownian motion is characterized by the harmonic measure. Its multifractal properties help one to
understand how the irregular geometry of biological membranes, metallic electrodes, porous catalysts, or
growing aggregates is ‘‘seen’’ by diffusing particles. To clarify this point, we performed an extensive
numerical study of the harmonic measure on two families of self-similar triangular Koch curves of
variable Hausdorff dimension which may represent branched pore networks or fjordlike rough interfaces.
Although these structures are apparently different, the multifractal properties of the harmonic measure in
two cases are found to be very close for curves of small Hausdorff dimensions and to differ for higher
irregularity. This provides new insight into optimization problems in chemical engineering.
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Various transport phenomena in nature and chemical
industry are governed by Laplacian fields. Examples can
be found in physiology (oxygen diffusion towards and
across alveolar tissue in pulmonary acinus), in electro-
chemistry (electric current through metallic electrodes
into electrolyte), and in petrochemistry (diffusion of re-
active molecules towards catalytic surface) [1]. To increase
the overall diffusive flux, the interface geometry is often
made, naturally or artificially, very irregular. This is the
case of porous catalysts, rough metallic electrodes, or
tortuous mammal acini. However, the transfer or reactive
capacity of an interface is crucially limited by its accessi-
bility for the Brownian motion. This effect known as diffu-
sional screening may have positive or negative conse-
quences for practical applications. For example, it bounds
the overall production of species in the diffusion-limited
regime of heterogeneous catalysis but allows one to design
long-working catalysts [2]. The adaptive regularization of
the lung respiratory efficiency is also related to this effect
[3–6].

The accessibility of a boundary for diffusing particles is
mathematically characterized by the harmonic measure
also known as primary current distribution in electrochem-
istry. For any (Borel) subset of the boundary, its harmonic
measure is defined as the probability for the Brownian
motion started from a distant source to hit the boundary
for the first time on this subset [7–9]. For a smooth
boundary, the distribution of the harmonic measure is
completely determined by its density (in electrostatics,
this function gives the electric charge distribution on a
metallic surface induced by a distant charge). The presence
of a simple geometrical irregularity is reflected in a singu-
lar behavior of this density. For instance, the probability to
hit a wedge of angle � within a vicinity of diameter �
decreases as �� for vanishing �, where

� � �=�: (1)

The exponent � permits one to characterize the ‘‘accessi-
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bility strength’’ or ‘‘screening capacity’’ of this irregularity
in the sense that sharp angles (higher �) are less accessible
(more screened) for diffusing particles than obtuse ones
(lower �). In this light, the most accessible angle is a
needle with � � 2�, so that �min � 1=2 in agreement
with Beurling’s theorem [10].

For a rough interface, almost each boundary point leads
to a singularity, so that the harmonic measure density does
not exist (while the measure itself is well defined). Being
locally still characterized by their ‘‘strengths,’’ the bound-
ary points of the same � can be grouped into a subset S�.
The Hausdorff dimensions f��� of different subsets S� of
the boundary form the multifractal spectrum of the har-
monic measure. Roughly speaking, while � quantifies the
accessibility ‘‘strength’’ of boundary points in S�, the
function f��� shows how ‘‘big’’ this subset is. In particular,
the maximum value of f��� gives the Hausdorff dimen-
sion D0 of the boundary, a measure of its geometrical
complexity.

Although the multifractal properties of the harmonic
measure were studied enough, the relation between the
geometry itself and its multifractal spectrum is still ob-
scure. Is a more irregular boundary (greater D0) more
screened? How does the presence of deep fjords or a
pore network modify the surface accessibility? More gen-
erally, what makes a boundary less accessible? The last
question, which originated the present Letter, is closely
related to different optimization problems in chemical
engineering.

Without pretending to give complete answers to these
fundamental questions, we are going to clarify certain
points. For this purpose, the harmonic measure ! has
been studied numerically on two families of self-similar
triangular Koch curves obtained iteratively from the same
generator shown in Fig. 1. The Hausdorff dimension D���0

of these curves can be varied continuously from 1 to 2 by
changing the angle � between two intermediate segments
from � to 0:
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D���0 �
ln4

ln�2� 2 sin�=2�
: (2)

Depending on the side which is exposed to diffusing par-
ticles, the shape of these curves is very different so that one
can speak about the two families. Starting from a distant
source at the top of Fig. 1, the particles progressively
penetrate into smaller and smaller pores of the material.
Such curves could mimic the geometry of a branched pore
network and are called ‘‘top seen.’’ In contrast, the diffus-
ing particles started at the bottom of Fig. 1 arrive onto a
rough surface with a fjordlike pore structure. The curves of
this family are called ‘‘bottom seen.’’

The numerical simulations have been realized for the
first ten generations of these curves with different angles
�. For fixed generation order g and angle �, the curve is
covered by a finite number of compact disjoint sets ��k of a
chosen diameter �. The trajectories of the Brownian mo-
tion were modeled with the help of the geometry-adapted
fast random walk algorithm developed originally for the
quadratic Koch curve and described in detail in [11].
Starting from a distant source, a diffusing particle executes
a series of random jumps in the bulk. The jump length at
each step is equal to the distance between the current
position and the boundary. This distance is calculated
explicitly for the first generation, while the self-similarity
of the Koch curves allows one to estimate it for higher
generations. Periodic boundary conditions are imposed on
the left and right vertical borders. The particle is consid-
ered as absorbed on a small region S \ ��k of the boundary,
when the distance to this region from the current position
FIG. 1. (a) Fourth generation of the self-similar triangular
Koch curve with the Hausdorff dimension D0 ’1:7. Depending
on the side exposed to diffusing particles, this curve allows one
to model either branched pore networks (source at the ‘‘top’’) or
fjordlike rough bays (source at the ‘‘bottom’’). (b) Generator of
this curve is composed of four identical linear segments with the
angle � � �=12 between intermediate segments.
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becomes smaller than a chosen threshold value. Repeating
the above trajectory simulation N times, one approximates
the hitting probabilities pk;� � !fS \ ��k g by frequencies
of absorptions on different regions. We used N � 1010,
which allows one to calculate the positive order moments

� ����q; �� �
X

k

�pk;��q (3)

with five significant digits. The scale � is ranged between
the diameter of the curve L � 1 and the smallest segment
length ��g for the chosen generation order g, where � �
2�1� sin��=2�� is the homothety ratio. The use of the
logarithmic development [11] ensures an accurate compu-
tation of the multifractal exponents �����q� of the harmonic
measure:

�����q� � lim
�!0

ln� ����q; ��
ln�

: (4)

These exponents are related to the multifractal spectrum
f������ by Legendre transform [12]:

f������ � min
q
fq�� �����q�g: (5)

For convenience, the multifractal dimensions are often
introduced as D���q � �����q�=�q� 1�.

As a numerical test for the accuracy of the above nu-
merical technique, we first calculated the information di-
mension D���1 for both families of Koch curves with the
Hausdorff dimension D���0 ranging between 1.01 and 1.99.
The Makarov theorem states that D1 � 1 for any simply
connected set in the plane; i.e., the Hausdorff dimension of
the support of the harmonic measure is equal to 1 [13,14].
In full agreement with this mathematical result, the com-
puted values D���1 for all studied curves equal unity with a
deviation smaller than 10�3. Since the statement D1 � 1
presents a truly nontrivial condition for the calculated
distributions, this test confirms the validity of the following
numerical results.

The dependence of the other multifractal dimensions
D���q on the Hausdorff dimension D���0 is shown in Fig. 2.
The first and quite surprising result is that the multifractal
dimensions D���q turn out to be identical for the top-seen
and bottom-seen curves of the same Hausdorff dimension
when D���0 & 1:3. Being quite different geometrically,
these two types of morphologies are essentially indistin-
guishable for diffusing particles, i.e., when they are ‘‘seen’’
by the harmonic measure. At the same time, the spatial
distributions of hitting probabilities fpk;�g over these two
boundaries are very different. However, from a certain
value of D���0 , the multifractal dimensions for the top-
seen and bottom-seen curves are separated. In the former
case, these dimensions approach 1, while in the latter one,
they converge to smaller values. Their different limits can
be explained by a simple geometrical argument. When the
angle � goes to 0, the channels of the top-seen curves
2-2
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FIG. 3. Multifractal dimensions D���q of the harmonic measure
as functions of the order q for bottom-seen (squares) and top-
seen (circles) curves with D���0 � 4=3. The solid lines represent
the asymptotic behavior (7).
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FIG. 2. Positive order multifractal dimensions of the harmonic
measure on the top-seen (solid symbols) and bottom-seen (open
symbols) triangular Koch curves: q � 2 (stars), q � 3 (squares),
q � 4 (diamonds), q � 5 (up-pointing triangles), q � 10 (down-
pointing triangles), and q � 1 (circles). For comparison, the
dependence (6) of D���1 for the bottom-seen curves is drawn by a
solid line. Dotted lines are a guide to the eye.
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become progressively thinner, and the harmonic measure is
concentrated on horizontal segments almost uniformly.
Such a distribution is not essentially different from that
on a simple linear segment. As a result, all multifractal
dimensions seem to converge to 1. In contrast, the bottom-
seen curves approach staircase shapes as�! 0, so that the
multifractal dimensions D���q converge to nontrivial values
D���0�
q .
When the moment order q increases, the contribution of

small hitting probabilities progressively vanishes. In the
limit q! 1, the only maximum probability pmax contrib-
utes, so that the multifractal dimension D���1 describes its

scaling behavior: pmax / �
D���1 as �! 0. This is the lowest

bound of D���q and, consequently, the smallest value of the
strength for the Koch boundaries: ����min � D���1 . For the
bottom-seen curves, the maximum hitting probability cor-
responds to the upper corner (with obtuse angle 2���),
so that one may expect to find the scaling exponent D���1 to
be �=�2����, as in the case of a simple wedge singu-
larity. However, the self-similar structure of the Koch curve
leads to a different result. Indeed, the presence of a number
of other angles in a close vicinity of this corner makes the
scaling of the harmonic measure less sharp. For the
bottom-seen curves, the following simple relation provides
a very good fit for the numerical data (see Fig. 2):

D���1 ’
2

3

1

1��=4�
: (6)

This scaling behavior formally corresponds to a wedge
singularity with the obtuse angle � � 3�=2� 3�=8. In
particular, in the limit of the staircase shapes (�! 0 and
D���0 ! 2), the maximum hitting probability corresponding
to the right angle has the scaling exponent D���0�

1 � 2=3,
in perfect agreement with our numerical results.
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For large enough q, the contribution of the maximum
hitting probability is still dominant, and one may use the

simplest approximation � ����q; �� / �pmax�
q / �qD

���
1 to

obtain

D���q ’ D���1 �
D���1
q� 1

: (7)

Although this asymptotic relation gives a false value for the
correlation dimension (q � 2), it becomes accurate for the
multifractal dimensions of higher orders as shown in Fig. 3.
The simple form of the asymptotic behavior (7) may be
related to the deterministic self-similarity of the triangular
Koch curves. In contrast, the stochastic boundaries such as
percolation clusters [15,16] or diffusion-limited aggregates
[17–19] exhibit different asymptotic behaviors.

The negative orders q accentuate the contribution of
small hitting probabilities. In the limit q! �1, the only
minimum probability pmin contributes to � ����q; ��, D����1
characterizes its scaling behavior, pmin / �

D����1 (as �! 0),
and one has ����max � D����1. However, an accurate compu-
tation of pmin presents a difficult problem since this proba-
bility decreases very rapidly with the generation order g
and Hausdorff dimension D���0 . The same difficulty con-
cerns the computation of the negative order moments. For
this reason, we had to limit ourselves to the curves with
D���0 � 4=3. Even for the case D���0 � 4=3, the negative
order multifractal dimensions for the top-seen and bottom-
seen curves are close to each other (Fig. 3), and they are
almost indistinguishable for smaller Hausdorff dimen-
sions. In contrast, a more pronounced difference would
be expected for larger D���0 . As shown in Fig. 3, the
asymptotic behavior (7) can also be applied in the limit
q! �1, if D���1 is replaced by D����1. For the top-seen
triangular Koch curves, the minimum hitting probability is
located at the deepest vertex of the angle �, so that one
may expect D����1 ’ �=�. The numerical simulations sug-
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FIG. 4. Multifractal spectra for top-seen (open symbols) and
bottom-seen (solid symbols) curves of different Hausdorff di-
mensions: D���0 � 1:01 (diamonds), D��� � 1:10 (squares), and
D���0 � 4=3 (circles). The vertical dotted lines indicate the
reflection symmetry of these spectra.
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gest D����1 ’ �=� with � ’ �=0:9. It means that the har-
monic measure ‘‘sees’’ a larger angle than � due to the
presence of other corners in close vicinity.

Finally, the multifractal spectra f��� for the top-seen
and bottom-seen curves of different Hausdorff dimensions
are presented in Fig. 4. Since the computation of the right-
hand side of these spectra involves the negative order mo-
ments, the only moderate Hausdorff dimensions were con-
sidered. The first observation is that the multifractal spectra
for both curves of the same Hausdorff dimension are
identical for D���0 � 1:01 and D���0 � 1:10, while their
right-hand sides become slightly different for D���0 �

4=3. For larger D���0 , a higher difference between these
spectra is expected due to the above analysis of multifractal
dimensions. Interestingly, the multifractal spectra seem to
be symmetric with respect to reflection at a vertical line,
i.e., f��� ’ f�2�0 � ��, where �0 depends on D���0 , pro-
viding the maximum of the spectrum: f��0� � D���0 . Since
the multifractal dimensions for the top-seen and bottom-
seen curves become different for larger D���0 , this symme-
try would be broken, at least for one of these two families.
This question remains open for the moment.

In conclusion, we draw attention to the two following
results. First, the Hausdorff dimension D���0 , as a measure
of the geometrical complexity, is not determinant for the
diffusional screening: the harmonic measure on the top-
seen curves with D���0 close to 2 exhibits almost the same
scaling behavior as on a smooth boundary since D���q
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converge to 1. This result provides new insight into prac-
tical applications, e.g., in chemical engineering. Indeed, it
shows that one does not need to explore very irregular
shapes to diminish the multifractal dimensions. Second,
the multifractal dimensions and multifractal spectrum of
the harmonic measure on the top-seen and bottom-seen
curves are identical for moderate values of D���0 . This
means that the harmonic measure is not sensitive enough
to distinguish these boundaries of quite different geometry.
The hierarchical self-similar structure of these curves is
thus more determinant than their geometrical details.
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