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We define the algorithmic complexity of a quantum state relative to a given precision parameter, and
give upper bounds for various examples of states. We also establish a connection between the entangle-
ment of a quantum state and its algorithmic complexity.
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Algorithmic information provides a concise notion of
complexity, or randomness, for individual classical ob-
jects. It is measured by the length of the shortest computer
program that produces a faithful image of the object, usu-
ally represented as a string of binary numbers [1–3]. This
notion of complexity has not only added a new perspective
to abstract areas such as mathematical proof theory
(Gödel’s theorem) [3] but it has also been applied success-
fully to a range of problems in thermodynamics. Examples
are the Maxwell demon paradox [4,5], and the treatment of
irreversibility in classical chaotic systems [6,7].

Quantum theory has changed our conception of physical
objects, whose states are described as vectors in a Hilbert
space. For composite objects, this leads to the fundamental
property of quantum entanglement, which cannot be ex-
plained by any classical theory. A consistent discussion of
the thermodynamics of systems that are monitored by
quantum information processing devices should therefore
be based on an appropriate definition of the algorithmic
complexity of quantum states.

In this Letter, we propose a definition for the algorithmic
complexity of a quantum state that depends on a given
precision parameter, and give upper bounds on complexity
for various examples of states. We also establish a connec-
tion between the entanglement of a quantum state (in terms
of its Schmidt measure [8]) and its algorithmic complexity.
Earlier proposals for the algorithmic complexity exist; they
are based either on the reproducibility of a quantum state
via Turing machines [9,10] or on universal probability
[11]. Our proposal is based on the idea that each quantum
state is ultimately identified with an experimental prepa-
ration process [12]. The definition of the algorithmic com-
plexity of a quantum state is thus naturally reduced to the
description complexity of its (abstract) preparation pro-
cess. A similar approach has been introduced in Ref. [13]
in the analysis of relations between computation complex-
ity and entanglement.

To motivate our definition of the algorithmic complexity
of a quantum state, we consider the following scenario.
Alice has created a certain quantum state in her laboratory
and wants to describe this state to Bob, who is supposed to
reproduce it in his laboratory. How difficult is it for Alice to
describe to Bob the state of her system? In order to answer
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this question we may distinguish the two situations in
which Alice and Bob communicate via a classical or a
quantum channel. In the latter case, Alice may send to Bob
the quantum state altogether (or in some Schumacher com-
pressed form) [14]. If the communication is classical, this
is not possible. On the other hand, as a quantum state can
be regarded as the result of some experimental preparation
procedure, Alice may choose to send to Bob the latter. In
this case, the complexity of a quantum state is identified, in
a very natural way, with the description complexity of an
experimental preparation procedure [15].

Even though the first approach may seem ‘‘more quan-
tum,’’ it lacks an important feature that we usually asso-
ciate with the description of an object. Even if Bob has the
state sent by Alice, he might not know what state he has
received. In this Letter, we shall thus follow the second ap-
proach and identify the algorithmic complexity of a quan-
tum state with its preparation complexity, i.e., the classical
description complexity of the preparation procedure.

To be able to communicate, Alice and Bob must first
have agreed on a common language which they are using to
describe their preparation procedure. Ideally, they will also
use the same ‘‘toolbox’’ to compose their experiments and
the same words when referring to elements of this toolbox.
The toolbox is in general an abstraction from any real
experimental scenario: in quantum information theory
such an abstraction leads to defining the toolbox by a set
of elementary operations on a Hilbert space with a given
tensor-product structure and dimension. In particular such
a toolbox will include the ability to prepare some standard
reference state, and a finite set of elementary operations. A
complete preparation procedure is then described as a
sequence of unitary transformations and possibly measure-
ments applied to the reference state.

In classical information theory, the algorithmic com-
plexity of an object measures the amount of information
necessary to reproduce it. The Kolmogorov complexityKCl

of a binary string ! is defined as the length of the shortest
program that, running on a universal Turing machine,
gives ! as output. We stress that algorithmic complexity
takes into account only the length of the program (and thus
the length of the description of the object) and not the time
needed by the computer to actually run the program. This
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last quantity is instead studied by the computational com-
plexity and is related to a different property of objects, that
is, their logical depth [16].

It is always possible to reproduce a string ! �

!i1!i2 � � � by means of a program of the form ‘‘write
!i1!i2 � � � .’’ This implies that the length of a string con-
stitutes (up to a constant) an upper bound for the complex-
ity of the string itself: KCl�!n� & l�!n� � n [17].
Naturally there are sequences for which this upper bound
is far too large: the complexity of a periodic string, for
example, grows only logarithmically with the length of the
sequence. A string is said to be complex (or structureless,
or random) if its algorithmic complexity grows linearly
with its length: these are the strings typically generated by
random sources (e.g., a coin toss).

Considering that a quantum state can be characterized
by a sequence of elementary operations (represented, e.g.,
as a ‘‘circuit’’), we define the complexity of a state refer-
ring to that of the circuit itself. A finite set of gates (con-
stituting a complete gate basis) is suitable to prepare any
state up to an arbitrary precision. Through adequate cod-
ing, the circuit is reduced to a (classical) string whose
Kolmogorov complexity is well-defined and which can be
associated with the original state. In this way the algorith-
mic complexity of a state satisfies the intuitive idea of com-
plexity as a measure of ‘‘how difficult’’ it is to prepare a
state. Since with a finite number of gates only a countable
set of states can be prepared exactly, it is necessary to
introduce a precision parameter in such a definition.

From now on we represent with QN the space generated
by N qubits and with j0iN 2QN the vector j0iN � j0i�N ,
where each j0i is an element of the computational basis
fj0i; j1ig of a single-qubit Hilbert space. We represent with
Cj0iN the result of the application of a circuit C on the state
j0iN; if jh’jCj0iNj2 � 1� " we will say that C prepares
j’i with precision " (where 0 � " � 1). We say that two
states j’i and j i are " distinguishable if jh j’ij2�1�".

Once we fix a complete gate basis B and a code �, the
procedure to compute the algorithmic complexity of state
j’i is the following. (1) With the gates contained in the
basis B, build a circuit CB;" that prepares j’iwith precision
". (2) Code the circuit, obtaining a classical sequence
!��CB;"� � !�

i1
� � �!�

im
of symbols !�

ik
� !�

ik
�CB;"� 2

�. The algorithmic complexity of a state, relative to the
basis B, the code �, and the circuit CB, with precision
parameter " is K�;B;CB;"

Net �j’i� � KCl	!
��CB;"�
. (3) In gen-

eral, there are more circuits that prepare the same state j’i,
and, in principle, the corresponding complexities can be
different. In order to define a property of the state itself
(and not related to the circuit used to reproduce it) we
minimize over all of them.

Definition.—The algorithmic complexity of the state
j’i, relative to the code � and the gate basis B, with
precision parameter " is

K�;B;"
Net �j’i� � min

CB;"2~CB;"
K�;B;CB;"

Net �j’i� (1)
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where ~CB;" is the set of all the circuits built with gates from
B that prepare j’i with precision ".

Considering that the choice of code and basis is arbi-
trary, it is necessary to study how it influences the complex-
ity of the state. It is also relevant to consider how the
complexity of a quantum state depends on the precision
with which we are required to reproduce it.

Dependence on the code.—If � and � are two different
codes, then, for any state j’i and any precision parameter
": K�;B;"

Net �j’i� � K�;B;"
Net �j’i� � k�;�, where k�;� is a con-

stant that depends only on � and �. k�;� is the length of a
‘‘dictionary’’ with which it is possible to translate the
description made using one code to that made using the
other. Since both codes are finite, such a dictionary is finite
too and, in the limit of big values of K�;B;"

Net �j’i�, its
contribute is negligible. Considering this code-invariance
property we can omit explicating the dependence on the
code (we can imagine fixing it once and for all) and write
simply: KB;"

Net�j’i�.
Complexity and precision.—Let us consider now how

the complexity of a state depends on the precision parame-
ter. It has been shown [18] that using just the set of all
1-qubit gates, plus the controlled-NOT, it is possible to
reproduce any unitary operation U over QN using O�4N�
gates. However, if one is interested in reproducing the
action of a unitary operation on one particular (given) state,
O�2N� such gates are sufficient. Thus, to prepare any state
j’i from the given initial state j0iN we need at most O�2N�
gates. We consider now the Solvay-Kitaev theorem [19]
which implies that any circuit acting on QN built with m
1-qubit and C-NOT gates and can be reproduced up to
precision " using O	mlogc�m"�
 gates from a finite gate
basis (c 2 	1; 2
 is a constant whose exact value is not
yet known). It follows that the action of any unitary trans-
formation on j0iN can be implemented (and thus any j’i 2
QN can be prepared) up to precision " via a circuit built
with gates from any finite and complete basis; futhermore,
the number of gates in such a circuit is M� 2N log1

" .
The length of the string that codes the circuit grows

linearly with the number of gates of the circuit itself: to
code a circuit that prepares a general state j’i 2QN we
need thus a sequence whose length is (proportional to) M.
From what seen above we then have

KB;"
Net�j’i 2QN� & 2N log

1

"
: (2)

We notice that this bound is much higher than the
classical one, where the complexity grows at most linearly
with the number of bits of the string. Intuitively this reflects
the fact that the space of quantum objects is much richer
than that of classical ones. In the last part of this work we
will also see that such difference can be explained by
quantum entanglement.

Dependence on the basis.—The definition of the algo-
rithmic complexity of a state has a dependence on the
choice of the basis. Given any state j’i there always exists
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a particular basis whose usage makes the preparation of j’i
trivial. If Alice wants to describe to Bob a state and they
have previously agreed on using a certain gate basis, then
Alice has only to describe the circuit (passing the sequence
!C). If they have not agreed on a particular gate basis, then
Alice could indeed build a circuit using the ‘‘best’’ basis,
but in this case she would have to describe the basis itself to
Bob, and this would be a similarly difficult task [20].

One might nevertheless wonder whether there is some
particular basis that can describe all (or almost all) states
with simple circuits. If such a basis existed it would
obviously be convenient for Alice and Bob to agree on
using that and (almost) all states would be noncomplex. In
the following we show that such a basis cannot exist as,
once any gate basis is fixed, the number of noncomplex
states is small in relation to the total number of states.

In classical information theory it is known that the
number of compressible (bit) strings is ‘‘small;’’ more
precisely the ratio between the strings with complexity
smaller than a constant k and the total number of n-bit
strings is bound by �2k � 1�2�n.

As we have seen in the previous paragraphs, once we fix
a basis B and a precision parameter ", we can associate
with every quantum state j’i a �2N log1

"�-bit string !̂B
" �j’i�

whose classical algorithmic complexity coincides with
the complexity of j’i. The result seen above for classical
bit strings can thus be generalized to quantum states and
one finds that the ratio between compressible quantum
states [such that KB

" �j’i�< k] and the total number of
"-distinguishable normalized states is bound by
22N log"�2k � 1� ’ 22N log"�k. Such a relation holds true
also in the case when k � k�N; "� is a function. State j’i
will be noncomplex only if its complexity is o�2N log1

"�:
this means that the right member of the inequality becomes
22N log"�o	2N log�1="�
 � 22N log" 
 1. Thus, one obtains that
for any fixed basis B, the number of noncomplex states is
exponentially small [21].

Note that there are cases in which the complexity is
invariant for basis choice. This happens, for example,
when we consider a coarsening of the gate basis; that is,
if we consider two gate bases B and B, one of which (B) is
constituted of gates that can be built with gates from B
(e.g., B contains a Toffoli gate, while B contains Hadamard
and C-NOT). In this case, any circuit made by gates from B
can be reproduced by one made by gates from B. The string
that codes this circuit will, in general, be longer than that of
the original circuit, but their complexities will change only
for a (small) constant kB;B (that represents the length of a
dictionary between the two gate bases).

From a less abstract point of view, this property trans-
lates into a form of invariance with respect to the choice of
the experimental apparatus. It is not required that the
circuit be actually built only with the elementary gates:
the use of more complex components does not modify the
complexity of the description as long as they are them-
selves composed of elementary parts.
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Entanglement and complexity.—The nature of quantum
correlations has been a central issue of long-lasting debates
on the interpretation of quantum mechanics. In recent
years, the notion of entanglement has been recognized as
central to quantum information processings [23]. As a
result, the task of characterizing quantum entanglement,
and the properties related to it, has emerged as one of the
prominent themes of quantum information theory. In the
last part of this Letter we investigate the relations between
the algorithmic complexity of a state and its entanglement
properties.

Let us begin by considering the case of a J-separable
state j’i 2QN of the type j’i �

NJ
j�1 j’ji, with j’ji 2

QNj , dim�QNj� � 2Nj , and
PJ
j�1 Nj � N. State j’i is not

totally entangled, as it can be written as the tensor product
of other (possibly entangled) states j’ji [with
KB;"

Net�j’ji� � 2Nj log1
" ]. As a consequence of this fact we

have KB;"
Net�j’ji� �

PJ
j�1 K

B;"=J
Net �j’ji�< 2N log1

" , where we
have used the fact that j’i is prepared with precision " if all
states j’ji are prepared with precision "=J [24]. Given any
J � 1, there thus exist �J� 1�-separable states whose
complexity is larger than that of any J-separable state.

Thus, the maximal complexity can be obtained only by a
truly N-party entangled state (in the sense that it cannot be
written as tensor product of states contained in subspaces
of QN). We stress that this consideration does not imply
that all totally entangled states have maximal complexity.
Counterexamples are given by W, GHZ [25], and the
N-qubit graph states. The latter are highly entangled, but
nevertheless their complexity is bound by N2 log1

" [24]. As
another example let us consider a state j’i 2QN of the
form j’i �

NN
j�1 j’ji, j’ji 2Q1. In this case we have

KB;"
Net�j’i��

PN
j�1K

B;"=N
Net �j’ji��2N logN" . Thus the com-

plexity of a separable state can grow only at most linearly
with the number of qubits.

The relation, illustrated by the examples above, between
complexity and entanglement can be formalized if we
choose the Schmidt measure [8] as a measure of entangle-
ment. Given a quantum state j�i 2QN , its Schmidt mea-
sure ES�j’i� is defined as the logarithm of the minimum
number r of separable states j’ii 2QN such that j�i �Pr
i�1 �ij’ii 2QN . In the following, we show how the

knowledge of the Schmidt measure of a quantum state
j�i allows us to give an upper bound on its complexity.

In order to do this we specify a circuit that prepares j�i.
The general idea is to compose such a circuit ‘‘using’’ the
circuits that prepare the states j’ii that appear in the
decomposition of j�i. Such a circuit is built with the aid
of logr ‘‘ancilla’’ qubits, initially prepared in the super-
position state jai �

Pr
i�0 �ijii (where jii is the state whose

binary representation gives the state of the logr qubits). We
then apply to the initial state j0i a circuit consisting of
controlled CB

" �j’ii� (in series), the application of each
conditional on the ancilla being in state jii. The last step
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is to project the ancilla on state
Pr
i�1 jii=

���
r
p
�

Nlogr
j�1�j0ij � j1ij�=

���
2
p

: state j�i is prepared if the result
is nonzero. If this is not the case, it is sufficient to repeat the
procedure from the beginning [26]. The complexity of the
state j�i can now be expressed in terms of the complexity
of the ancilla state jai and of that of the remaining circuit.

The ancilla can, in principle, be any state of logr qubits;
from what was seen in the above sections we thus have
KB;"

Net�jai� � 2logr log1
" � r log1

" . Once the ancilla is pre-
pared in the required state, it is necessary to describe the
remaining circuit. First of all we must describe the indi-
vidual circuits CB

" �j’ii� (and this requires a number of bits
bounded by the sum of the complexities of the single states
j’ii). Performing each of these circuits as a controlled
operation requires additional O�logr log1

"� gates from B.
We thus have

KB;"
Net�j�i� & 3N2ES�j�i� log

1

"
; (3)

where we have used the fact that, as the states j’ii are
separable, their complexity is bound by 2N log1

� . If j�i is
separable, in fact, we have ES�j�i� � 0, and the equation
above takes the form KB;�

Net�j�i� � 3N log1
� . Alternatively,

when the state j�i is truly entangled, with Schmidt mea-
sure logr � N, we have KB;"

Net�j�i� � 2N2N log1
"� 2N log1

"
(up to a polynomial term).

The notion of complexity described in this Letter can
be extended to mixed quantum states. Given a state
� its algorithmic complexity is defined as KB;"

Net��� �
min

Q
i	K

B;"
Net�j’i�


�i , where the minimum is taken over all
pure state mixtures such that � �

P
i�ij’iih’ij. Thus the

complexity of a mixed state is the average complexity of
the states that appear in its (optimal) mixture. The choice
of the geometric average is dictated by the necessity of giv-
ing an adequate weight to the probability distribution. Such
a definition coincides with the one we have introduced in
this Letter in the pure state case. Furthermore, one finds
that the relationship between entanglement and complexity
also holds. In particular we have KB;"

Net & 3N2ES��� log1
" ,

where ES��� is the Schmidt measure of the mixed state �
as defined in Ref. [8].

In this Letter we have introduced a new notion of
algorithmic complexity of a quantum state, based on the
classical description of its preparation procedure. We have
seen how the complexity of a quantum state grows, in
general, exponentially with the number of qubits and this
is significantly different from the algorithmic complexity
of classical objects (where the upper bound is linear with
the number of bits). In the last part we have shown how this
difference can be interpreted as a consequence of the
presence of quantum correlations, by giving a bound on
the complexity of a state in terms of its entanglement. A
consequence of this is that the absence of entanglement
(i.e., in completely separable states) reestablishes the clas-
sical limit for the complexity bound. Entanglement thus
20050
again proves to be a fundamental feature that distinguishes
quantum objects from classical ones.
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