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Two-Dimensional Bright Solitons in Dipolar Bose-Einstein Condensates
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We analyze the physics of bright solitons in 2D dipolar Bose-Einstein condensates. These solitons,
which are not possible in short-range interacting gases, constitute the first realistic proposal of fully
mobile stable 2D solitons in ultracold gases. In particular, we discuss the necessary conditions for the
existence of stable 2D bright solitary waves by means of a 3D analysis of the lowest-lying excitations. We
show that the anisotropy of the dipolar potential is crucial, since sufficiently large dipolar interactions can
destabilize the 2D soliton. Additionally, we study the scattering of solitary waves, which, contrary to the
contact-interacting case, is inelastic and could lead to fusion of the waves. Finally, the experimental
possibilities for observability are discussed.
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During the past years, the physics of ultracold atomic
and molecular gases has attracted considerable interest.
Although these gases are very dilute, their properties are
crucially determined by the interparticle interactions [1].
Up to now, only short-range van der Waals interactions
have played a significant role in typical experiments.
However, very recent developments are paving the way
towards a new fascinating research area, namely, that of
degenerate dipolar gases. A major breakthrough has been
very recently performed at Stuttgart University, where a
Bose-Einstein condensate (BEC) of 52Cr atoms has been
realized [2]. 52Cr atoms are particularly interesting, since
they present a large magnetic dipole moment, � � 6�B.
Hence, 52Cr BEC constitutes the first realization of a
degenerate dipolar gas. On the other hand, recent develop-
ments on cooling and trapping of molecules [3], on photo-
association [4], and on Feshbach resonances of binary
mixtures [5] open exciting perspectives towards a degen-
erate gas of polar molecules [6].

In addition to the usual short-range forces, dipolar par-
ticles oriented by an external field interact via dipole-
dipole interaction, which is long-range and anisotropic,
being partially attractive. New exciting physics is, there-
fore, expected in these systems. Recent theoretical analy-
ses have shown that the stability and excitations of dipolar
gases are crucially determined by the trap geometry [7–9].
Ultracold dipolar particles are also attractive in the context
of strongly correlated atomic gases [10,11], as physical
implementation of quantum computation [12], and for the
study of ultracold chemistry [13].

The nonlinearity of the BEC physics is one of the major
consequences of the interparticle interactions. In this sense,
resemblances between BEC physics and nonlinear physics
(in particular, nonlinear optics) have been analyzed in de-
tail. Several remarkable experiments have been reported in
this context, including four-wave mixing [14], BEC col-
lapse [15], and the creation of dark, bright, and gap solitons
[16]. The physics of BEC solitons has indeed aroused a
large interest. For short-range interactions and at suffi-
ciently low temperature, the BEC physics is provided by
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a nonlinear Schrödinger equation (NLSE) with cubic non-
linearity (Gross-Pitaevskii equation) [1]. The 1D NLSE
admits solitonic solutions for bright (dark) solitons [17]
for attractive (repulsive) interatomic interactions, the
equivalent of self-focusing (self-defocusing) nonlinearity
in Kerr media. For larger dimensions, the NLSE admits no
stable solitons, although discrete solitons may be found in
the presence of periodic potentials [18]. These solutions
may be created in cold atoms in optical lattices [19] but
possess a very limited mobility. The use of optical lattices
in one or two directions has been recently proposed to
allow for mobile 2D and 3D BEC solitons along a free
direction [20]. We stress, however, that these structures
move freely only along the free direction, clearly differing
from the solutions discussed in this Letter.

A dipolar BEC is, as we discuss below, described by a
NLSE with nonlocal nonlinearity, induced by the dipole-
dipole interaction. Nonlocal nonlinearity has been a sub-
ject of active investigation in disparate physical systems
during the past years. Nonlocality is known to be impor-
tant, e.g., in the physics of plasmas [21], where the non-
local response is induced by heating and ionization, and in
the physics of nematic liquid crystals, where it is the result
of long-range molecular interactions [22]. Nonlocality
plays a crucial role in the physics of solitons and modula-
tional instability [23–26]. In particular, any symmetric
nonlocal nonlinear response with positive definite Fourier
spectrum has been mathematically shown to arrest collapse
in arbitrary dimensions [24]. However, as discussed below,
these conditions are violated by the anisotropy of the
dipole-dipole interaction, which leads to an even richer
physics. Multidimensional solitons have been experimen-
tally observed in nematic liquid crystals [22] and in pho-
torefractive screening solitons [27]. Multidimensional
solitons have been also discussed in BEC with short-range
interactions, by considering the collapse arrest induced by
the first nonlocal correction to the local pseudopotential
[23,26]. However, in typical BEC experiments this col-
lapse arrest occurs for an extremely small condensate size
[26], which, except for the case of a very small particle
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number, leads to extremely large densities, at which three-
body losses destroy the BEC. In this sense, this Letter
constitutes the first realistic proposal to obtain multidimen-
sional fully mobile BEC solitons.

In this Letter, we are interested in the physics of solitons
in a 2D dipolar BEC. Since, as discussed below, the scat-
tering of these solutions is inelastic, we refer henceforth to
them as 2D solitary waves (SWs). Whereas, as discussed
above, for short-range interacting BEC a 2D stable SW is
not possible, we show that the dipole-dipole interactions
may stabilize a 2D SW. We discuss the appropriate con-
ditions at which this is possible, which involve the tuning
of the dipole-dipole interactions as discussed in Ref. [28].
We study the stability of the solitary waves, by means of a
fully 3D analysis of the lowest-lying excitations, showing
that, contrary to what is expected in the presence of general
long-range interactions [24], the anisotropy of the dipole-
dipole interactions is indeed a crucial feature, since it
induces destabilization for sufficiently large nonlocal po-
tentials. In the final part of this Letter, the scattering of 2D
SWs is analyzed. We show that this scattering is inelastic,
and it can lead under appropriate conditions to the fusion of
SWs. Finally, we conclude with a discussion about the
experimental feasibility and generation of the SWs.

In the following, we consider a BEC of N particles with
electric dipole d (the results are equally valid for magnetic
dipoles) oriented in the z direction by a sufficiently large
external field and that, hence, interact via a dipole-dipole
potential: Vd� ~r� � gd�1� 3 cos2��=r3, where gd �
�Nd2=4��0, with �0 the vacuum permittivity, � the angle
formed by the vector joining the interacting particles and
the dipole direction, and�1=2 � � � 1 a tunable parame-
ter by means of rotating orienting fields [28]. This tuna-
bility becomes crucial in our discussion.

A dipolar BEC at sufficiently low temperatures is de-
scribed by a NLSE with nonlocal nonlinearity [7]:
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pling constant which characterizes the contact interaction,
with a the s-wave scattering length. In the following, we
consider a > 0, i.e., repulsive short-range interactions. We
assume an external trapping potential U�~r� � m!2
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with no trapping in the xy plane.

In the following, we are interested in the possibility to
achieve a 2D SW in dipolar BECs. In order to have a good
insight on this issue, we introduce a Gaussian ansatz for the
wave function:
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variational parameters related with the widths in the xy
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plane and the z direction, respectively. We have numeri-
cally checked that this ansatz is indeed a very good ap-
proximation of the exact solutions of Eq. (1) for the
situations under consideration. Using this ansatz, the en-
ergy of the system reads:
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The minimization of E leads to the equations:
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where F��� � �1� �2��2��4�4 � 7�2 � 2� 9�4H����,
G��� � �1� �2��2��2�4 ��10�2 � 1� 9�2H����,
and � � ~gd=~g. Equations (4) and (5) admit a solution, and,
hence, a localized wave, only under certain conditions. A
simplified picture may be achieved by considering the fully
2D case in which the confinement in z is strong enough to
guarantee Lz � 1. In that case, both kinetic and interaction
energy scale as 1=L2

�. In the absence of dipole-dipole
interactions (~gd � 0), and irrespective of the value of L�,
E�L�� is, depending on the value of g, monotonic either
growing with L� (collapse instability) or decreasing with
L� (expansion instability). This reflects the well-known
fact that 2D solitons are not stable in NLSE with contact
interactions. In the case of a dipolar BEC, the situation is
remarkably different, since the function f depends explic-
itly on L�. This allows for the appearance of a minimum in
E�L�� (inset in Fig. 1), which from the asymptotic values
of f [f�0� � �1 and f��! 1� � 2] should occur if:
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A simple inspection shows that this condition can be
fulfilled only if ~gd < 0, i.e., only if the dipole is tuned as
previously discussed with �< 0 (this is true also for
Lz � 1). In that case, the tuning of the dipole-dipole inter-
action may allow for the observation of a stable SW,
characterized by an internal energy ES < 0 (inset in
Fig. 1). Note that, if Na=lz 	 1, then we arrive to the
condition j�j> 3=8� ’ 0:12. A direct resolution of
Eq. (9) (below) for large ~g shows stable SWs for j�j>
0:12, in excellent agreement with the Gaussian ansatz.

In order to gain more understanding on the stability of
the 2D SWs, we have analyzed the lowest-lying modes of a
SW, namely, breathing and quadrupolar modes. To this
aim, we employ a Gaussian ansatz of the form [29,30]:
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FIG. 2 (color online). Density plot of the fusion of two dipolar
2D SWs for ~g � 20, � � �0:5, and ~k � 0:01. From top to
bottom: !zt=2 � 0; 1000; 2000; 3000; 4000; 5000.
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FIG. 1. Breathing (bold solid line) and m � 
2 quadrupole
(bold dashed line) mode for ~g � 20, with �0 � L�=Lz, as a
function of �. 2D results are shown in thin lines. Inset: E��� for
~g � 500, and � � �0:10 (dashed line) and � � �0:20 (solid
line).
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where fbi�t�; �i�t�g, i � x; y; z, are time-dependent pa-
rameters, and insert this ansatz into the corresponding
Lagrangian density
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After integrating L �
R
d~rL, we obtain the corresponding

Euler-Lagrange equations for fbi�t�; �i�t�g. Linearizing
these equations around the stationary solution obtained
from Eqs. (4) and (5), we obtain the expressions for the
frequencies of the lowest-lying modes [30]. A typical
behavior of the lowest modes as a function of � is depicted
in Fig. 1. The lowest-lying mode has for any value of � a
breathing character. For sufficiently small values of j�j, the
frequency of the breathing mode tends to zero, and even-
tually the system becomes unstable against expansion. This
corresponds to the disappearance of the minimum in the
inset in Fig. 1. In this regime, the 2D picture provides a
good description of the physics of the problem, as shown in
Fig. 1. For sufficiently large values of j�j, the 3D character
of the system becomes crucial, leading to a different sort of
instability, in this case against 3D collapse. This is reflected
in the decrease of the frequency of the breathing mode.
Hence, as expected from general arguments for nonlocal
nonlinearity [24], the dipolar interaction can stabilize the
2D SW. However, a new crucial feature is introduced by
the anisotropic character of the dipolar interaction, since
too large dipolar interactions can destabilize the SWs.

As shown in Fig. 1, a 2D calculation offers a good
description of the problem for sufficiently small values of
j�j. In the 2D case, the system can be considered as
‘‘frozen’’ into the ground state ’0�z� of the harmonic
oscillator in the z direction, and, hence, the BEC wave
20040
function factorizes as ��~r� �  � ~��’0�z�. Employing this
factorization, the convolution theorem, the Fourier trans-
form of the dipole potential, ~Vd�k� � �4�=3��3k2

z=k2 � 1�,
and integrating over the z direction, we arrive at the 2D
NLSE:
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where ~n is the Fourier transform of n� ~�� � j � ~��j2, and
h2D�k� � 2–3
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erfc�k�, with erfc�x� the complemen-
tary error function. Below, we employ Eq. (9) to analyze
numerically the dynamics of 2D SWs.

Up to now, we have analyzed a single localized wave,
showing that a stable SW may exist under proper condi-
tions. In order to deepen our understanding of the 2D SWs,
and their comparison with the solitons in a 1D NLSE, we
have analyzed the scattering of two SWs for different
values of their initial center-of-mass kinetic energy Ekin.
Direct numerical simulations of the 2D nonlocal NLSE
show that the scattering of dipolar 2D SWs is inelastic. In
particular, as shown in Fig. 2, for sufficiently slow local-
ized waves (for the case considered in Fig. 2, Ekin �
2:9jESj), two SWs merge when colliding. As observed in
Fig. 2, the solitary waves, when approaching, transfer their
center-of-mass kinetic energy into internal energy, trans-
forming into a single localized structure. This structure,
although localized, is in an excited state, and clear oscil-
lations may be observed. For larger initial kinetic energies,
the waves move apart from each other after the collision,
but the transfer of kinetic energy into internal energy is
enough to unbind the SW, and the SWs are destroyed. This
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inelastic character of the scattering of dipolar 2D SWs
clearly distinguishes these solutions from solitons in a
1D NLSE [17] and will be the subject of further
investigation.

In the final part of this Letter, we discuss some issues
concerning the experimental realization of stable 2D SWs
in ultracold dipolar gases. As we have previously men-
tioned, the experimental generation of these structures
demands the tuning of the dipole-dipole interaction and,
in particular, the inversion of its sign. In addition to this
condition, the dipole-dipole interaction must be suffi-
ciently large, jgdj=g > 0:12. For 52Cr, jgdj=g ’ 0:03 for
� � �1=2, and, hence, the tuning of the dipolar interac-
tion must be combined with a reduction of the contact
interactions via Feshbach resonances. This combination
can be problematic, since the absolute value of the mag-
netic field must be kept constant while tuning the dipolar
strength [31]. However, optical Feshbach resonances could
be applied instead [32]. Additionally, as commented in the
introduction of this Letter, current developments open
optimistic perspectives for the achievement of a BEC of
polar molecules in the near future. Since appropriate mole-
cules in the lowest vibronic state can present very large
electric dipole moments [6], and the dipole-dipole interac-
tion may be tuned in these gases by means of rotating
electric fields, a broad regime of values of � may be
available, and, hence, a stable 2D SW should be easily
observable.

In summary, dipolar BEC offers a new highly control-
lable physical scenario for the analysis of nonlocal non-
linearity. We have shown that, contrary to the case of short-
range interacting BECs, stable 2D SWs can be generated in
dipolar BEC by means of tuning techniques, for a suffi-
ciently large ratio between dipole-dipole and short-range
interaction. However, our fully 3D stability analysis shows
that, contrary to general long-range interactions, the an-
isotropy of the dipolar interaction is crucial, since it in-
duces destabilization of the SWs for sufficiently large
dipolar interactions. We have also shown that these SWs
scatter inelastically and may undergo fusion for suffi-
ciently low scattering energies. Our Letter constitutes the
first realistic proposal for the observation of fully mobile
2D SWs in BEC. These 2D SWs can be employed for the
transport of cold atoms in 2D which can be easily guided
by means of Raman laser pulses, without complicated
wave guiding arrangements
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