
PRL 95, 198301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
4 NOVEMBER 2005
Short-Time Dynamics in Quasi-Two-Dimensional Colloidal Suspensions

Jesús Santana-Solano,1 Angeles Ramı́rez-Saito,1 and José Luis Arauz-Lara1,2
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The short-time dynamic properties of colloidal particles in quasi-two-dimensional geometries are
studied by digital video microscopy. We demonstrate experimentally that the effective-two-dimensional
physical quantities such as the dynamic structure factor, the hydrodynamic function, and the hydro-
dynamic diffusion coefficients are related in exactly the same manner as their three-dimensional
counterparts.
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The motion of colloidal species in confined geometries,
e.g., porous media, capillaries, microfluidic devices, and
rock fractures, is of great interest in various areas of
science and technology [1–11]. In the bulk, the dynamic
properties depend on the interparticle interactions, both
direct and hydrodynamic [12,13]. Under confinement, the
particles also interact with the confining walls, and, there-
fore, the description of the dynamics has to incorporate
also the particularities of the confining geometry. Thus,
while in homogeneous three-dimensional (3D) colloidal
systems there are well defined relationships between the
different physical quantities describing the dynamical
properties, under confinement the complexity introduced
by the geometry makes uncertain whether any relationship
could be established.

In this Letter, we demonstrate experimentally that, in
quasi-two-dimensional (Q2D) systems, the quantities de-
scribing the short-time dynamics of the confined colloids
maintain a relationship with exactly the same structure as
their 3D counterparts. In Q2D systems, a colloidal suspen-
sion is confined between two parallel flat walls, separated
by a distance only slightly larger than the particle’s diame-
ter. The reduced gap between the plates allows only small
excursions of the particles in the perpendicular direction
(z), and their main motion is then along the plane (x; y)
parallel to the walls. Thus, the systems are regarded as
effectively two-dimensional (2D), and the dynamic quan-
tities, such as the mean squared displacement, the dynamic
correlation function, and the hydrodynamic diffusion co-
efficients, are measured as if the system was actually two-
dimensional. Those effective-2D quantities carry, never-
theless, implicitly the effect of the direct and hydrody-
namic particle-walls interactions.

In homogeneous 3D colloidal systems, the dynamical
properties are described by a set of physical quantities with
a well defined interrelationship [12,13]. In such a case, the
general quantity describing the dynamic properties is the
dynamic structure factor F3D�k; t�, which is the k-Fourier
component of the time correlation function of the fluctua-
tions, of wavelength � � 2�=k, of the local particle con-
05=95(19)=198301(4)$23.00 19830
centration. This quantity can be expressed in terms of other
quantities describing the effects of the direct and hydro-
dynamic interactions on the collective and self-diffusion
motions at different time scales. For instance, at short
times, within the diffusion regime, F3D�k; t� decays expo-
nentially, i.e.,

F3D�k; t� � S3D�k� exp��k2H3D�k�t=S3D�k��: (1)

Here S3D�k� � F3D�k; 0� is the static structure factor, a
quantity depending only on the direct interparticle inter-
actions, and H3D�k� is the hydrodynamic function, a quan-
tity describing the collective hydrodynamic interactions
between the particles. The hydrodynamic function can be
expressed in terms of the configuration average of the
diffusion tensorsD3D

lj �r
N�, which areN-particle correlation

functions describing the hydrodynamic coupling between
particles l and j in the presence of the otherN � 2 particles
in the system, i.e.,

H3D�k� �
�

1

N

XN
l;j�1

k̂ �D3D
lj �r

N� � k̂ exp�ik � �rl � rj��
�
;

(2)

with the components of the diffusion tensor given by [14]

D��
lj �r

N� �
h�x�l �t��x

�
j �t�i

2t
: (3)

Here �x�l �t� is the displacement of the particle l in the
direction � at time t, and the angle brackets in Eqs. (2) and
(3) mean an equilibrium ensemble average. In principle,
Eqs. (1)–(3) can also be established for strictly two- and
one-dimensional systems. As we show below, those rela-
tions also remain valid for the effective-2D quantities
measured in Q2D systems.

Quasi-two-dimensional colloidal suspensions are pre-
pared following a standard procedure [8,15]. Briefly,
monodisperse water suspensions of polystyrene spheres
carrying negatively charged sulfate end groups on the
surface are extensively dialyzed against nanopure water
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to eliminate the surfactant added by the manufacturer
(Duke Scientific). In a clean atmosphere of nitrogen gas,
the suspension of particles of diameter � � 2:05	
0:06 �m is mixed with a small amount of larger particles
of diameter h � 2:92	 0:09 �m. A small volume of the
mixture (
1 �l) is confined between two clean glass
plates (a slide and a cover slip), which are uniformly
pressed one against the other until the separation between
the plates is h. Thus, the larger particles scattered across
the sample serve as spacers with an average distance of
�100 �m. The system is then sealed with epoxy resin, and
the species of mobile particles is allowed to equilibrate in
this confined geometry at room temperature (27:7	
0:1 �C). The samples are observed from a top view (per-
pendicular to the walls plane) using an optical microscope,
and the motion of the particles is recorded using standard
video equipment. The field of view is �80 60 �m2

(640 480 pixels) with � � 16:8 pixels. From the analy-
sis of the images, the 2D trajectories rj�t� of the particles
are determined with a time resolution �t � 1=30 s. From
rj�t�, various effective-2D physical quantities describing
self- and collective dynamics along the plane of motion are
obtained. All the results presented here were obtained from
the analysis of 104–105 total video frames taken in short
runs of 120 consecutive images at intervals of a few
minutes between runs [8].

In real space, the collective motion is described by the
effective-2D van Hove function G�r; t�, defined as the time
correlation of the fluctuations of the local particle concen-
tration, i.e., G�r; t� � N�1hn�r0; t � 0�n�r00; t�i, where
n�r; t� �

PN
j�1 ��r� rj�t�� is the 2D local concentra-

tion of particles at the 2D position r and time t, with r �
jr00 � r0j. At time t � 0 and r > 0, G�r; 0� � n�g�r�, n� �
n�2 is the reduced concentration, with n being the average
number of particles per unit area, and g�r� is the effective-
2D pair correlation function. In analogy to 3D, we define
here the effective-2D dynamic structure factor F�k; t� as
the 2D-Fourier transform of G�r; t� and the effective-2D
hydrodynamic function H�k� as the initial slope of F�k; t�
in analogy to Eq. (1). Measurements of F�k; t� and H�k� as
described above were reported in a previous work [8].
Those results are compared here with the results for the
hydrodynamic function obtained from measurement of the
diffusion coefficients as described below.

The components of the effective-2D hydrodynamic dif-
fusion tensors can be determined in a laboratory-fixed
reference system using Eq. (3). In the case where l � j
and � � �, we have D��

ll � Ds for l � 1; 2; . . . ; N and
� � x; y, with Ds being the short-time self-diffusion coef-
ficient, a quantity describing single particle diffusion in a
N-particle system. In the case l � j, the diffusion coeffi-
cients D�;�

lj characterize the hydrodynamic coupling be-
tween particles l and j by cross-correlating the fluctuations
of their positions along the Cartesian coordinates. It is
usually more convenient to describe the coupled motion
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of a pair of particles in terms of the dynamics of their
relative position r � rl � rj and of their center of mass
c � rl � rj (the collective mode). Changes in the collec-
tive and relative variables can be decomposed in compo-
nents along the parallel (k) and the perpendicular (?)
directions to the line connecting the particles centers at
time t � 0, i.e., �c�t� � ��ck�t�;�c?�t�� and �r�t� �
��rk�t�;�r?�t��. Then the hydrodynamic coupling of a
pair of particles is characterized by collective and relative
diffusion coefficients denoted here as Dc;k, Dc;?, Dr;k, and
Dr;? and defined as Dm;p � h�mp�t��mp�t�i=2t, where
m � r; c and p �k;? . Both sets of diffusion coefficients,
D�;�
lj and Dm;p, are related one to the other by a simple

rotation. Here we measure and present results for Dm;p in
order to compare with results reported recently [11]. The
coefficients are determined as follows. We select a pair of
particles at a distance r within a small range �r � 0:05�.
From short-time trajectories of both particles, the autocor-
relation of �mp�t� is determined. The time should be short
enough to ensure that changes in r are within �r and that
the correlation is linear with time. In our systems, this is
accomplished for times �5�t. The diffusion coefficient
Dm;p is then given by the initial slope of the correlation
function. This procedure is applied to every pair of parti-
cles in the field of view, obtaining in this way the diffusion
coefficient as a function of the interparticle distance r. This
measurement is repeated at different times and the results
are averaged to yield smooth curves with very small ex-
perimental uncertainties (within the symbol size of the
figures below).

Figure 1 shows the hydrodynamic diffusion coefficients
vs the interparticle distance r for �a � 0:23 (a) and
0.42 (b), where �a �

�
4 n
� is the particle area fraction.

Circles correspond to the collective mode in the parallel
(solid symbols) and perpendicular (open symbols) direc-
tions, whereas the relative mode is represented by tri-
angles. The insets show the corresponding measured
effective-2D radial distribution functions for both systems
(open circles), compared with Monte Carlo (MC) computer
simulations of 2D hard-disk systems at the same area
fractions (lines). This comparison shows that the interpar-
ticle repulsive interaction is screened by the ionic species
dissociated from the glass walls and the particle behavior
resembles a system of hard spheres. Thus, the diffusion
coefficients in Fig. 1 contain only the effect of the hydro-
dynamic coupling between particles and that of the ex-
cluded volume interaction, except at distances close to
contact where the particles also feel the screened electro-
static interaction. The hydrodynamic diffusion coefficients
for a pair of isolated hard spheres in a homogeneous
unbounded fluid has interesting features, which we sum-
marize here in order to compare with the results in confined
systems [14,16]. In that case, the hydrodynamic coupling
is long ranged with the leading term being r�1; both
collective diffusion modes (parallel and perpendicular)
1-2
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FIG. 1. Normalized diffusion coefficients vs interparticle dis-
tance r. The insets show the experimental radial distribution
function (open circles) compared to MC simulations of hard
disks (solid lines).
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are enhanced, while both relative motions are suppressed;
there is symmetry around the asymptotic value between the
parallel modes and between the perpendicular modes. In
Q2D systems, we found that the hydrodynamic interactions
are also long ranged but decay faster; our results are
consistent with r�2 (see below). Here the perpendicular
modes are anomalous. They have the opposite behavior of
their 3D counterparts; i.e., the collective diffusion is sup-
pressed while the relative motion is enhanced; the symme-
try between the perpendicular modes is maintained but not
between the parallel modes. As is shown here, only the
relative parallel coefficient depends strongly on the particle
concentration. The shape of the collective parallel coeffi-
cient Dc;k shows also some structure, but it is less depen-
dent on particle concentration. The perpendicular modes
are symmetric and fit well to a function of the form
Dm;?=2Ds � 1	 a�r�2 � br�3� for m � r and c, respec-
tively. From the analysis of the systems studied here, we
found a and b to be almost independent of particle con-
centration. The solid lines in Fig. 1 are the functions
Dm;?=2Ds � 1	 4

5 �r
�2 � 0:95r�3�. Thus, Dr;k depends

more strongly on the interparticle direct interactions than
the other modes.

Figure 2 shows the behavior of the normalized diffusion
coefficients at long interparticle separations for various
particle concentrations. As one can see here, for r > 3�,
which is the range of the pair correlation functions (see
insets in Fig. 1), the decay of the 4 modes (symbols)
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becomes independent of particle concentration and the
symmetry between the parallel and between the perpen-
dicular modes is recovered. The solid lines are the func-
tions 	 4

5 r
�2, which fit well the experimental data at long

r. The asymptotic r�2 decay of Dm;p was reported, and
rationalized in terms of a mass dipole contribution to the
flow field, by Cui et al. [11]. The anomalous behavior of
the perpendicular modes was also reported by those au-
thors. However, they did not observe the symmetry be-
tween Dc;? and Dr;? with respect to 2Ds being reported
here.

Let us now focus on the main objective of this work, i.e.,
on the relationship between the physical quantities describ-
ing the dynamic properties of colloidal particles in Q2D
systems. As mention above, here we are concerned with the
quantities describing the short-time dynamics and, in par-
ticular, those describing the hydrodynamic interactions,
such as the two-body hydrodynamic correlation described
by Dlj and the collective hydrodynamic coupling de-
scribed by the effective-2D hydrodynamic function H�k�,
which, in analogy with Eq. (1), is defined as the initial
slope of the effective-2D dynamic structure factor, i.e.,
H�k� � �S�k�k�2 ln�F�k; t�=S�k��. Let us stress here the
fact that the latter is just a definition since no formal
expression for the actual hydrodynamic function for Q2D
systems has been derived yet. Thus, one could equally well
use the 2D version of Eq. (2) as the definition of the
hydrodynamic function H0�k�. Then the question here is
whether these two quantities describe the same physics, at
least qualitatively. In other words, the question is whether
Eq. (2) is indeed the microscopic expression for the initial
slope of F�k; t� in terms of (effective-2D) two-body hydro-
dynamic correlations. In order to answer this question, we
evaluate the 2D version of Eq. (2), substituting the tensors
D3D
lj by the measured effective-2D Dlj. The Cartesian

components of the diffusion tensors are obtained from
Dm;p by a simple rotation. The final expression, after
some straightforward algebra, is
1-3
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FIG. 3. Effective-2D hydrodynamic function H�k� vs k, ob-
tained from measurements of the initial slope of the dynamic
structure factor [8] (lines) and from measurements of the diffu-
sion tensors according to Eq. (4) (symbols).
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H0�k� � Ds

�
1�

2�a

Ds�2

Z
drrg�r�f�k; r�

�
; (4)

where g�r� is the effective-2D radial distribution func-
tion and f�k; r� � J0�kr��Dc;k �Dr;k� � J1�kr��kr�

�1
�Dc;? �Dc;k �Dr;k �Dr;?�, with J0�kr� and J1�kr� being
the Bessel functions of order 0 and 1, respectively.

Figure 3 shows H0�k� obtained from the evaluation of
Eq. (4) for 3 high concentration systems (symbols). We
also plot H�k� for the same systems (solid lines), obtained
from the initial slope of F�k; t� as reported in Ref. [8]. As
one can see here, there is an excellent agreement between
both quantities. Let us stress that this remarkable coinci-
dence between both measurements could not be anticipated
since (i) both quantities are obtained following very differ-
ent routes; in one case the collective correlation function
is measured, whereas in the other case one measures the
dynamic correlation between pairs of particles; and (ii) the
behavior of the effective-2D diffusion coefficients is quali-
tative and quantitatively different from that of their 3D
counterparts. This result validates the 2D version of Eq. (2)
as the microscopic expression for the effective-2D hydro-
dynamic function and allows us to define unambiguously
this physical quantity describing the effect of the hydro-
dynamic interactions in the short-time colloidal dynamics.

The main result of the present work is the experimental
demonstration that the effective-2D quantities used to de-
scribe the dynamical properties of colloidal particles in
Q2D geometries at short times satisfy exactly the same
19830
relationship as their 3D counterparts. In other words, we
demonstrate that the short-time collective dynamics [i.e.,
F�k; t�] can be recovered from measurements of two-body
hydrodynamic correlations, exactly in the same way as it
can be done in homogeneous 3D systems. This result poses
the problem of its formal derivation, but it is beyond the
aim of the present work. Nevertheless, let us note that this
might be a property of confined systems which are homo-
geneous and isotropic along the unbounded dimensions,
and, thus, it should also be true for other geometries such as
quasi-one-dimensional systems (for instance, particles in a
cylindrical capillary). Finally, let us note that our measure-
ments of the diffusion coefficients exhibit feature some in
agreement and others in disagreement with those reported
by other authors [11]. This issue is interesting and will be
discussed in more detail elsewhere.
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