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Allostery in a Coarse-Grained Model of Protein Dynamics
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We propose a criterion for optimal parameter selection in coarse-grained models of proteins and
develop a refined elastic network model (ENM) of bovine trypsinogen. The unimodal density-of-states
distribution of the trypsinogen ENM disagrees with the bimodal distribution obtained from an all-atom
model; however, the bimodal distribution is recovered by strengthening interactions between atoms that
are backbone neighbors. We use the backbone-enhanced model to analyze allosteric mechanisms of
trypsinogen and find relatively strong communication between the regulatory and active sites.
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A major challenge of molecular biology is to understand
regulatory mechanisms in large protein complexes that are
abundant in multicelluluar organisms. To make simulation
of such complexes feasible, coarse-grained models have
been developed, in which a subset of the atoms in the
complex are used to simulate the large-scale motions.
However, principled methods to assess the accuracy of
coarse-grained models are currently lacking.

In one common coarse-graining method, an all-atom
model is simplified by considering effective interactions
among a subset of the atoms (e.g., just the alpha carbons).
The usual criterion for model accuracy is the ability of a
model to reproduce atomic mean-squared displacements
(MSDs). However, MSDs are just one aspect of protein
dynamics—a stricter criterion for the accuracy of a coarse-
grained model is the similarity between the configurational
distributions of the selected atoms in the coarse-grained
and all-atom models. Such a criterion is also biologically
relevant, in part because the conformational distribution is
a key determinant of protein activity [1].

One useful measure of the difference between confor-
mational distributions is the Kullback-Leibler divergence
D, (see definition below) [2,3]. Recently, an analytic ex-
pression for D, was obtained for harmonic vibrations of a
protein-ligand complex both with and without a protein-
ligand interaction [3]. Here we show how an equivalent
expression may be applied to refine a coarse-grained model
of protein dynamics. We refine an anisotropic elastic net-
work model (ENM) [4] of trypsinogen dynamics with
respect to an all-atom model calculated using CHARMM
[5]. The unimodal density-of-states distribution of the
ENM disagrees with the bimodal distribution obtained
from the all-atom model; however, the bimodal distribution
is recovered by strengthening interactions between atoms
that are backbone neighbors. Finally, the backbone-
enhanced elastic network model (BENM) is used to ana-
lyze allosteric mechanisms of trypsinogen.
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Let P(x) be the probability distribution of the 3N atomic
coordinates X = (x, ¥, 21, -- ., Xy, Yn» Zy) Of @ molecular
model in the harmonic approximation. Let x = (x, X,),
where x; is the 3N; coordinates of a subset of atoms of
interest, and X, is the 3N, coordinates of the remaining
atoms. We are interested in calculating the marginal dis-
tribution P(x;):

P(x)) = f PVx,P(x ), X,). (1)

Consider a harmonic approximation to the potential
energy function U(x + X), where x is the deviation
from an equilibrium conformation x:

Ux + xq) = U(xq) + %XTHX. 2)

The matrix H is the Hessian of U evaluated at x: H; jle =
02U/ dx;0x jle- We assume a Boltzmann distribution for
P(x) and ignore solvent and pressure effects:

P(x) = Z*lefx*Hx/2kBT

3N
= (ZWkBT)_3N/2e_|QV+X|2/2"BT1_[/&),‘, 3)

i=1
where Z is the partition function, kz is Boltzmann’s con-
stant, T is the temperature, the elements of the matrix
|Q)? = diag(w?, ..., w3y) are the eigenvalues of H, and
the columns of the matrix V are the eigenvectors of H.
Here and elsewhere, products and summations are carried
out over nonzero modes. Define the submatrices H;, H,,
and G as follows:

+ GX2 ) ( 4)

Hx = H1 G X1 _ H1X1
Gf H2 X G+X1 + H2X2
H, couples coordinates from x;; H, couples coordinates

from x,; and G couples coordinates between x; and x,. In
Eq. (3), |QVTx|? now can be expressed as

[QVTx|2 = |QVTx, |2 + |[AUtx, + ATTUTGTx, 12, (5)
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where the diagonal elements of the matrix |A]?> =

diag(Af, ..., A3y,) and the columns of the matrix U are
the eigenvalues and eigenvectors of H,, and the diagonal
elements of the matrix [(}|? = diag(@?3, ..., @3y,) and the

columns of the matrix V are the eigenvalues and eigenvec-
tors of a matrix H defined as

H=H, - GH;'G' = V|Q*V', (6)
Equation (6) is equivalent to an equation independently
derived to study local vibrations in the nucleotide-binding
pockets of myosin and kinesin [6]. Performing the integra-
tion in Eq. (1) leads to the desired equation for P(x;):
3N
P(Xl) — (27Tk T) 3N, /2 —IQV*XIIZ/ZkBTl—i @,;. (7)
i=1
Now consider the problem of optimal selection of the
parameters I" of a coarse-grained model of protein dynam-
ics. Let x,, be the coordinates of the N, alpha carbons in
either an all-atom model or a coarse-grained model. We
define the optimal coarse-grained model as the one for
which the Kullback-Leibler divergence between P (x,)
and P(x,) is minimal, i.e., for which I" is chosen such that

P(x,)
P(x4)

is minimal. We previously calculated an analytic expres-
sion for equations like Eq. (8) when P(x,) and P(")(x,,) are
both governed by harmonic vibrations [3]:

Wa, /D 1
Dg) = Z (ln L+
“ i= w; ZkBT

pl = f dNex PO (x,) In 8)

‘_‘)%WITAXO{,OP

RN AN
Z : v.2 — =
+ 5 Z % |v; le 2). 9)
=1 @;
In Eq. (9), wﬁ.m and VE.F) are the eigenvalue and eigenvector
of mode i of the coarse-grained model, (D% gnd v; are the ith
eigenvalue and eigenvector of the matrix H calculated for

the alpha-carbon atoms of the all-atom model [Eq. (6)], and

Ax, o= EI()) X,,0 1s the difference between the equilib-

rium coordinates of the coarse-grained and all-atom
models.

In the ENM [4], interacting alpha-carbon atoms are
connected by springs aligned with the direction of atomic
separation. Following the Tirion model of harmonic vibra-
tions [7], each spring has the same force constant y. For a

given interaction network, the eigenvectors v( )
M2

are inde-
pendent of vy, and each eigenvalue w; '~ is proportional to
v. The value of y at which D§a) is minimal may be

calculated using Eq. (9):

a j=1 j=

Because the eigenvalues wgr)z

y3N

are proportional to 7y, the

constants a? = wf.m /v are independent of y. The third
and fourth terms of Eq. (9) cancel when y assumes the
value given by Eq. (10).

The interaction network in an elastic network model is
generated by connecting pairs of atoms separated by a
distance less than or equal to a cutoff distance r.. To

optimize the model, the value of r. for which DSB is
minimal is numerically estimated, using 7y from Eq. (10).

As a test case, we developed a coarse-grained model of
trypsinogen residues 7-229 from an all-atom model [8].
CHARMM was used for all-atom simulations using the
CHARMM?22 force field with default parameter values.
HBUILD was used to add hydrogens, and the energy was
initially minimized using 2000 steps of the adopted basis
Newton-Raphson method, gradually reducing the weight
of a harmonic restraint to the crystal-structure coordinates.
The final minimized structure was obtained through vac-
uum minimization until a gradient of 10~7 kcal/mol A was
achieved, and the Hessian H was calculated in CHARMM.
The coordinates of the ENM were taken from the alpha-
carbon atoms of the minimized all-atom model.

The alpha-carbon vibrations of the all-atom model were
calculated by diagonalizing H from Eq. (6). Interestingly,
the density-of-states distribution is bimodal (Fig. 1) with
2/3 of the frequencies in the low-frequency spectrum and
1/3 of the frequencies in the high-frequency spectrum.
Calculation of the density-of-states distribution from other
globular proteins yields bimodal patterns with a similar 2:1
ratio between the numbers of low- and high-frequency
modes (unpublished results).

The best ENM of trypsinogen was obtained using a
cutoff distance r,. of approximately 7.75 A, for which the
optimal value of 1y is 53.4 kcal/mol A2, yielding a value of

DQ;) = 312.9. The density-of-states distribution for the
ENM is unimodal, unlike that for the all-atom model
(Fig. 1).

Although the ENM treats all alpha-carbon pairs equally,
the distribution of distances between successive alpha
carbons along the protein backbone is known to be tightly
centered about 3.8 A. In addition, two of the six alpha
carbons nearest to a typical alpha carbon are backbone
neighbors, which might explain why 1/3 of the
CHARMM-derived modes have significantly higher frequen-
cies than the others. We therefore wondered whether the
ENM might be improved by enhancing interactions be-
tween backbone neighbors.

A more accurate coarse-grained model is obtained by
using a force constant enhanced by a factor of € for
interactions between alpha carbons that are neighbors on

the backbone. Minimization of Dg;) for such a backbone-
enhanced elastic network model with respect to € and r,
subject to Eq. (10) yields a model with € =42, r, =
10.5 A, and y = 4.26 kcal/mol AZ, resulting in a much
lower value DS{} = 102.3. The density-of-states distribu-
tion for this model agrees quite well with that of the all-
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FIG. 1 (color). Density-of-states distribution for all-atom and

elastic network models of trypsinogen. Frequency units are

(kcal/mol Azmp)'/2 = 2.04 X 10"3 Hz, where m,, is the proton

mass. Densities were estimated by counting the number of

modes in bins of width 0.2 and normalizing the integral to
663, which is the total number of nonzero modes.

atom model (Fig. 1), especially considering that the
model is optimized with respect to D;l;), which does not
directly involve the density-of-states distribution. The
agreement is especially good for the high-frequency
modes, suggesting that a uniform force constant is a rea-
sonable approximation for interactions between alpha car-

bons that are backbone neighbors. Furthermore, the
overlap YV, SN, IVOT9,12/N for the 223 highest-
frequency modes is 0.99, indicating that the spaces of the
high-frequency eigenvectors are nearly identical between
the BENM and all-atom models.

Both the BENM and the ENM yield patterns of alpha-
carbon MSDs that are similar to that of the all-atom model
(Fig. 2). Because there are fewer low-frequency BENM
modes than low-frequency CHARMM modes (Fig. 1), the
BENM MSDs are consistently smaller than the CHARMM
MSDs; however, the BENM MSDs may be improved by
selecting y = 1.2 kcal/mol A® (Fig. 2). These improved

MSDs come at the cost of a higher value of D;FH) = 528.4,
and a change in the frequency scale by a factor
(1.2/4.3)1/2 = 0.53, resulting in a poor model of the
density-of-states distribution. The ENM with parameters
that minimize Dg;) exhibits poor MSDs (not shown); how-
ever, an ENM with r, = 15.4 A and y = 0.4 kcal/mol A2
yields MSDs that agree well with those of the CHARMM
model (Fig. 2). In agreement with previous results using
the ENM [4], we confirmed that the parameters of both the
ENM and BENM may be adjusted to yield a reasonable
model of crystallographic MSDs (not shown).

Next consider the problem of quantifying allosteric
effects in proteins [3]. In allosteric regulation, molecular
interactions cause changes in protein activity through
changes in protein conformation. Although the importance
of considering continuous conformational distributions in
understanding allosteric effects was recognized by Weber
[9], theories of allosteric regulation that consider continu-

ous conformational distributions have been lacking. We
began to develop such a theory by defining the allosteric
potential as the Kullback-Leibler divergence Dy between
protein conformational distributions before and after li-
gand binding and by calculating a related quantity using
changes in the conformational distribution of the full
protein-ligand complex [3]. Here we use the expression
for the marginal distribution in Eq. (7) to calculate an
equation for the true allosteric potential in the harmonic
approximation.

Let x, be the protein coordinates selected from the
coordinates x of a protein-ligand complex. P'(x,) and
P(x,) are the protein conformational distributions with
and without a ligand interaction, respectively. Equa-
tion (7) enables P'(x,) to be calculated from the full
conformational distribution P’/(x) of the protein-ligand
complex. The equation for the allosteric potential in the
harmonic approximation follows from Ref. [3]:

D S ln—d)g + b 2lviAx, o2
X I:Zl < wi 2kBT 1 1 ]7,0
3N 2
1 & o 1
+25 LEtvE-2) 11
33 e = (an

In Eq. (11), ®/? and V! are the ith eigenvalue and eigen-
vector of the matrix H calculated for the protein atoms of
the protein-ligand complex, w? and v; are the eigenvalue
and eigenvector of mode i of the apoprotein, and Ax,, =
X;"O — X, 0 is the difference between the equilibrium co-
ordinates of the protein with and without the ligand inter-

Crystallographic
2r CHARMM ---------- 1
BENM min(D,), scaled gamma
ENM fit CHARMM
BENM min(D,) -------

MSD [Angstrom?]

0.5

0 50 100 150 200 250
Alpha-carbon residue number

FIG. 2 (color). Mean-squared displacements of alpha-carbon
positions for trypsinogen residues 10-229 obtained from
normal-modes simulations using CHARMM (dashed green line),
a BENM with parameters that minimize Dy with respect to
CHARMM (dotted blue line), the same BENM but with vy adjusted
to better agree with CHARMM MSDs (fine-dotted magenta line),
and an ENM with parameters adjusted to agree with CHARMM
MSDs (dashed-dotted cyan line). Values were calculated at 7 =
300 K using the equipartition theorem. Harmonic vibrations at
thermal equilibrium are known to inadequately model crystallo-
graphic MSDs, which include other sources of disorder (solid red
line) [13].
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FIG. 3 (color). Visualization of local sites on the surface of
trypsinogen that exhibit a large change in the conformational
distribution upon binding BPTI. Values of D, are mapped to a
logarithmic temperature scale, with red coloring indicating large
values. Changes are large both in the BPTI-binding site (left) and
in the active site (right). There is a 90° rotation about the x axis
between the left and the right panels.

action. The term Z?iv‘l’ "In@!/w; is proportional to the
change in configurational entropy of the protein upon
releasing the ligand, and Z?ﬁf’w%lvijp,olz/ZkBT is pro-
portional to the potential energy required to deform the
apoprotein into its equilibrium conformation in the
complex.

We used Eq. (11) to calculate changes in the configura-
tional distribution of local regions of trypsinogen upon
binding bovine pancreatic trypsinogen inhibitor (BPTI).
Alpha-carbon coordinates were obtained from a crystal
structure of the complex [8] and were used to construct
BENMSs of trypsinogen with and without BPTI. Both mod-
els used r, = 10.5 A, y = 4.26 kcal/mol A2, and € = 42.

Local changes in the conformational distribution of
trypsinogen were analyzed by considering changes in the
neighborhood of each alpha-carbon atom. A neighborhood
was defined by selecting the atom of interest plus its five
nearest neighbors, and the matrix H was calculated for
these six atoms in the models both with (yielding H') and
without (yielding H) the BPTI interaction. A local value of
D, was obtained using the eigenvalues and eigenvectors of
H’ and H in a suitably modified version of Eq. (11).

Not surprisingly, we found that the local values of D,
were relatively large in the neighborhood of the BPTI-
binding site (Fig. 3, left panel). Values of D, elsewhere
on the surface were smaller, with one interesting exception:
Values in the active site were comparable to those in the
BPTI-binding site (Fig. 3, right panel).

Considering models beyond the ENM and BENM (and
even models beyond proteins), the theory presented here
leads to a general prescription for modeling harmonic
vibrations using coarse-grained models of materials. To
optimally model the all-atom conformational distribution,
always use an energy scale for interactions that eliminates
the discrepancy due to differences in the eigenvectors
[Eq. (10)] and select the coarse-grained model for which

the entropy of the conformational distribution is the largest
[first term of Eq. (9)].

Although traditional elastic network models can explain
characteristics of the functions and dynamics of proteins
[10], the present study shows that they provide a poor
approximation to the conformational distribution calcu-
lated from all-atom models of harmonic vibrations of
proteins. Model accuracy is significantly improved by us-
ing a backbone-enhanced elastic network model, which
strengthens interactions between atoms that are nearby in
terms of covalent linkage. Although the backbone-
enhanced model appears to accurately capture the high-
frequency alpha-carbon vibrations of an all-atom model,
the model less accurately captures the slower, large-scale
harmonic vibrations (Fig. 1).

Using calculations of the allosteric potential, communi-
cation between the regulatory and active sites of trypsino-
gen was observed in a purely mechanical, coarse-grained
model of protein vibrations that does not consider mean
conformational changes or amino-acid identities, support-
ing prior arguments for the possibility of allostery without
a mean conformational change [11]. Because harmonic
vibrations represent a small portion of the full spectrum
of highly nonlinear, large-scale protein motions, it will be
interesting to use more realistic calculations of free-energy
landscapes [12] to more accurately model changes in pro-
tein conformational distributions.
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