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Broken Asymmetry of the Human Heartbeat: Loss of Time Irreversibility in Aging and Disease
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Time irreversibility, a fundamental property of nonequilibrium systems, should be of importance in
assessing the status of physiological processes that operate over a wide range of scales. However,
measurement of this property in living systems has been limited. We provide a computational method
derived from basic physics assumptions to quantify time asymmetry over multiple scales and apply it to
the human heartbeat time series in health and disease. We find that the multiscale time asymmetry index is
highest for a time series from young subjects and decreases with aging or heart disease. Loss of time
irreversibility may provide a new way of assessing the functionality of living systems that operate far from

equilibrium.
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Living systems are subject to mass, energy, entropy, and
information fluxes across their boundaries. Under healthy
conditions, these open dissipative systems function in con-
ditions far from equilibrium. In contrast, for extreme cases
presaging death, a state approaching maximum equilib-
rium is reached.

Such living systems utilize energy to evolve to more
hierarchically ordered structural configurations and less
entropic states in comparison with the surrounding envi-
ronment. Their self-organizing capability is related to the
unidirectionality of the energy flow across the system’s
boundaries and the irreversibility of the underlying pro-
cesses. To the extent that loss of self-organizing capability
is associated with aging or disease, loss of time irreversi-
bility may be a marker of pathology.

Analytically, time irreversibility refers to the lack of
invariance of the statistical properties of a signal under
the operation of time reversal [1]. It is a fundamental
property of nonequilibrium systems [2] and, therefore, is
expected to be present in biological systems ranging from
the cellular to the system levels [3]. Surprisingly, relatively
little work has been published on practical implementation
of time reversibility to biological time series [4—9].

In this Letter, we provide systematic evidence to support
the hypotheses that (i) time irreversibility is greatest for
healthy physiologic systems under free-running condi-
tions, which exhibit the most complex dynamics [10,11],
and (ii) time irreversibility decreases with aging or pathol-
ogy, providing a marker of loss of functionality and adapt-
ability. Therefore, quantitative measurements of time
irreversibility may be of basic and practical importance
[12,13].

Time irreversibility has been reported in tremor time
series of patients with Parkinson’s disease [5,6] and in
electroencephalographic seizure recordings [7,9]. These
studies, suggesting an increase of time asymmetry with
disease, are based on analyses that focus on single scale
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measurements. However, physiologic time series generate
complex fluctuations over multiple time scales associated
with a hierarchy of interacting regulatory mechanisms.
Therefore, it is important to introduce an asymmetry mea-
sure that takes into account the multiple time scales inher-
ent in physiologic control mechanisms.

To illustrate how such a measure can be implemented for
physiologic signals analysis, we use the heart rate time
series—the output signal of an integrative physiologic
control system—as an example. For this application, we
first map the original heart rate time series, denoted as X =
{x;}, 1 =i = N, to the sequences of heart rate increments
and decrements, ¥ ={y;}, 1=i=N — 1, where y; =
X;j+1 — x; and N is the number of data points. Physio-
logically, this new sequence reflects the competition be-
tween the neuroautonomic stimuli impinging on the sinus
node.

In order to extract information on multiple time scales,
we analyze the original signal at different resolutions by
constructing a set of coarse-grained time series [14]. Each
coarse-grained time series is built by taking the average
inside a moving window with 7 data points, where 7 is the
scale factor. Each element of a coarse-grained time series is
defined as

7—1
y-(i) = Z)’i+j/7'~ ey
j=0

Using a statistical physics approach, we make the sim-
plifying assumptions that each transition (increase or de-
crease in heart rate) is independent and requires a specific
amount of “energy,” E. The probability density function of
this class of system [15,16] can be assumed to follow

p = exp(—BE — yQ), @)

where Q represents the nonequilibrium heat flux across the
boundary of the system, and 8 and 7y are the Lagrange
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multipliers derived from the constraints on the average
value of the energy E per transition and the average con-
tribution of each transition to the heat flux Q.

Since the time reversal operation on the original
heart rate time series inverts an increase of heart rate to a
decrease, and vice versa, the difference between the
average energy for the activation of heart rate, i.e.,
(BE + yQ),_,, and the relaxation of heart rate, i.e.,
(BE + 7’Q>yr<o’ can be used as a measurement of time
reversal asymmetry.

Taking into consideration that the assumption of Eq. (2)
links the energy to the empirical distribution, we define the
following measure of temporal irreversibility:

a(r) = [elp(y) Inp(y,) — p(—y,) Inp(—y,)dy.
[P P(y;) Inp(y,)dy,

The time series is reversible if and only if a(7) = 0.

For biological systems, it is not only important to quan-
tify the degree of irreversibility of a time series but also to
know which time series represents the “forward” direction
and which is time reversed. Equation (3) does not provide
this information. Therefore, we consider instead the equa-
tion

. ()

(r) = Jelp(y:) Inp(y;) — p(=y,) Inp(—y,)]dy,

A .4
i I= o PO np(r)dy, @

If A(7) > 0, then for scale 7 the time series is irreversible.
However, if A(7) = 0, the time series may or may not be
irreversible for scale 7.

Real-world signals, such as heart rate time series, are
sampled at a finite frequency, in which case y is a discrete
variable. For the analysis of these signals, the following
equation provides an estimator of A(7):

ZO Pr(y.)In[Pr(y,)] ZO Pr(y,)In[Pr(y,)]
_ > Y- <

TS P Pr] S P InPry,)] T )
Vr

yr

A(r)

where Pr(y,) denotes the probability of the value y,.

For a range of time scales, we can then define an easily
computed multiscale asymmetry index (A;) as the summa-
tion of the asymmetry values obtained for each time scale,
ie.,

L
Ap="> A (6)
=1

To apply this measurement to real-world data [17], we
analyze human cardiac interbeat intervals time series from
an open-access database [18] (Fig. 1) for four groups:
healthy young, healthy elderly, those with congestive
heart failure, and those with atrial fibrillation. In Fig. 1
the solid line connects the values 3 | - Pr(y,) In[Pr(y,)]
for scales 1 to 20 [19]. Each of these values reflects the
average amount of energy associated with an increase of
the heart rate for a particular scale. Similarly, the dotted
line connects the values >, _ Pr(y;) In[Pr(y,)] for the

same set of scales. Each of these values reflects the average
amount of energy associated with a decrease of the heart
rate for scale 7.

The time asymmetry index A; is significantly higher for
healthy young subjects than for both healthy elderly sub-
jects and subjects with pathology (p < 0.005). Further-
more, the time asymmetry is higher for the elderly group
than for the pathologic groups (p << 0.005). In contrast,
current (single scale-based) time asymmetry measures do
not yield consistent differences.

The results are compatible with the general concept that
time irreversibility degrades with aging and disease over
multiple time scales. Note that both highly irregular heart-
beat time series, such as those from subjects with atrial
fibrillation, and less variable, more regular time series,
such as those from heart failure subjects in sinus rhythm,
tend to be more time symmetric than time series observed
in healthy subjects.

We next tested the hypothesis that cardiac interbeat
interval time series of healthy subjects have greater time
asymmetry than artificial time series generated by algo-
rithms designed to model heart rate dynamics. We ap-
plied our method to the 26 physiologic and 24 synthetic
time series of an international time series competition
database [20]. As predicted, the asymmetry index was
higher for physiologic time series (A; = 8.9 5.1, mean =
standard deviation) than for the synthetic ones (A4; =
—0.25 £ 1.5). This finding indicates that the proposed
models do not fully account for the nonequilibrium prop-
erties of the control mechanisms regulating heart rate
under healthy conditions.

The presence of irreversibility in dynamical systems
excludes Gaussian linear processes and static nonlinear
transformations of such processes as possible models
[21,22]. However, it does not rule out the possibility of
trivial sources of irreversibility not generated by the dy-
namical system, e.g., artifacts and certain types of non-
stationarities which predominantly affect the signal on a
single scale.

Consider the signal that results from superimposing
Gaussian white noise on a piecewise linear signal with a
characteristic scale S. For the resulting signal, A(7) — 0
only for scales 7 >> §, meaning that the linear segments
affect the asymmetry values over a range of scales and not
only on scale S. Therefore, obtaining A(7) # O for a set of
scales does not necessarily imply that the structure of the
time series at all scales is asymmetric.

To further address this question, we use the empirical
mode decomposition (EMD) method introduced by Huang
et al. [23], with which any signal X(¢) can be decomposed
into a finite number of ““intrinsic mode functions’ (IMFs),

X(@) = iIMFi + 1, (7
i=

where r, is a residue, which can be either the mean trend or
a constant.
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FIG. 1. Multiscale time irreversibility (asymmetry) analysis of the cardiac interbeat interval sequences derived from 24 h Holter

monitor recordings of representative subjects: (a) healthy young (Yng); (b) healthy elderly (Eld); (c) congestive heart failure (CHF);
and (d) atrial fibrillation (AF). Scale factor is referenced to heartbeat number. For each scale, the values of A; from the dotted and solid
lines reflect, respectively, the average amount of “‘energy” associated with increases and decreases of the heart rate (see text).
(e) Asymmetry index A; for groups of 26 healthy young subjects (A; = 8.68 * 3.40, mean * standard deviation), 46 healthy elderly
subjects (A; = 3.44 = 2.67), 43 CHF subjects (A; = 0.13 = 1.80), and 9 subjects with AF (A; = —0.04 = 1.01). Differences between
groups are significant (p < 0.005, ¢ test), with the exception of the two pathologic states (CHF vs AF). Cardiac interbeat interval time
series obtained during the sleeping period yield comparable results. Therefore, nonstationarities due to physical activity do not account
for these asymmetry properties. Note that, in terms of the mean A; values, the results indicate that the time series from the group of
healthy young subjects are the most temporally irreversible, followed by those from the group of healthy elderly subjects and those
from the groups of patients, both of which have A; values close to zero.

The EMD method is based on the assumption that a
signal consists of different, not necessarily stationary
IMFs, each oscillating around a mean value at a character-
istic time scale. Unlike wavelet and Fourier analysis, the
EMD uses a fully adaptive basis that is derived from each
data set by means of a sifting process. Therefore, it is
applicable to the analysis of nonlinear and nonstationary
time series [24].

To the extent that the asymmetry property has a non-
trivial source affecting the system’s dynamics over mul-
tiple scales, a certain degree of asymmetry is expected in
several IMFs. To test this hypothesis, we applied the EMD
method to the time series of healthy subjects and those
generated by the heart rate dynamics models included in
the PhysioNet international time series competition data-
base [20]. The mean values and the standard deviations of
the asymmetry index for the physiologic (N = 26) and the
model (N = 24) generated time series groups were
(i) IMF 1: A; =0.46 = 1.20 (physiologic) and A; =
—0.26 = 0.60 (model), (ii) IMF 2: A; = 1.37 = 1.56
(physiologic) and A; = —0.89 = 1.22 (model), and

@iii)) IMF 3: A; = 3.07 £3.01 (physiologic) and A; =
—0.43 £ 3.64 (model) [25]. Note that the difference be-
tween the A; values for each comparison was statistically
significant (p = 0.005).

These results confirm that (i) time asymmetry is not just
a local property of the healthy heartbeat; instead, it extends
over a wide range of scales; (ii) proposed models of heart
rate dynamics fail to account for this multiscale property;
(iii) nonstationarities or artifacts with a characteristic time
scale are not the explanation of the multiscale asymmetry
property. It is, however, unclear whether this robust prop-
erty of the healthy cardiac interbeat variability results from
a superposition of individual contributions, e.g., sinus ar-
rhythmia (coupling between heartbeat and respiration),
baroreflexes, circulating hormones, and other mechanisms
operating on different time scales, or whether it is a col-
lective property of the system.

In summary, multiscale time irreversibility analysis pro-
vides information not extractable by conventional meth-
ods, including entropy measures and spectral techniques.
Since time asymmetry is a fundamental property of
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healthy, far from equilibrium systems, this approach may
be useful for both the development and testing of realistic
models of physiologic control and for bedside diagnostics.
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