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Alternative Mechanisms of Structuring Biomembranes: Self-Assembly versus Self-Organization
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We study two mechanisms for the formation of protein patterns near membranes of living cells by
mathematical modelling. Self-assembly of protein domains by electrostatic lipid-protein interactions is
contrasted with self-organization due to a nonequilibrium biochemical reaction cycle of proteins near the
membrane. While both processes lead eventually to quite similar patterns, their evolution occurs on very
different length and time scales. Self-assembly produces periodic protein patterns on a spatial scale below
0:1 �m in a few seconds followed by extremely slow coarsening, whereas self-organization results in a
pattern wavelength comparable to the typical cell size of 100 �m within a few minutes suggesting
different biological functions for the two processes.
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Living cells display internal structures, on various length
scales, that are regulated dynamically. Examples include
the organization of nerve cells into axon, body, and den-
drites [1] or the occurrence of short-lived signaling patches
in the membrane of chemotaxing amoebae [2]. The origin
of many of those structures is a nonuniform distribution of
biochemical molecules, that can be achieved by a sponta-
neous symmetry breaking through local fluctuations. The
diversity of time and length scales in cellular structures
strongly suggests that a variety of mechanisms participate
in the structuring process. From a physics perspective, one
can distinguish at least two different classes of processes:
self-assembly and self-organization [3].

Self-assembly implies spatial structuring as a result of
minimization of the free energy in a closed system. Hence,
a self-assembled structure corresponds to a thermody-
namic equilibrium. A prominent example for self-
assembly in single cells is phase separation of lipids and
proteins due to macromolecular interactions. Phase sepa-
ration occurs if the interaction energies dominate the en-
tropy contribution. Model membranes show a phase
separation due to lipid-lipid interactions [4,5] or lipid-
protein interactions [6] (for a critical discussion see also
Ref. [7]). Theoretical analysis of phase separation in bio-
membranes has been mainly restricted to free energy con-
siderations [8,9], which can predict the final equilibrium
state, but do not capture the transient dynamics.

Self-organization, in contrast, requires a situation far
away from thermodynamic equilibrium and is possible
only in open systems with an external energy source.
One prominent example is pattern formation in reaction-
diffusion systems, which was first proposed by Turing [10]
and later on become influential in development biology
[11]. The key ingredients are nonlinear self-enhancing
reactions, a supply of chemical energy, and competing
diffusion of the involved molecules. Experimental patterns
in single cells that are successfully modeled by reaction-
diffusion equations include calcium waves [12] and protein
distributions in E. coli [13].
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In the vicinity of membranes molecular interactions and
reaction-diffusion processes occur simultaneously. In this
Letter we discuss and compare two dynamical models for
the alternative mechanisms of pattern formation near the
cell membrane: model I describes self-assembly of protein
domains due to lipid-protein interactions and model II
describes an active reaction-diffusion mechanism resulting
in self-organization of proteins.

The two models are based on the properties of GMC
proteins reviewed in Refs. [14,15], which play a critical
role in the development of the neural system [16] and in the
regulation of cortical actin-based structures and cell mo-
tility [17]. A key result is that both models display a similar
qualitative dynamical behavior but act on largely different
time and length scales. Model I exhibits stationary domains
on a submicrometer scale within seconds. A slow coarsen-
ing process follows obeying the expected scaling law.
Phase separation arises from a relaxational process into
thermodynamic equilibrium, where the equilibrium state is
characterized by vanishing fluxes. Model II leads to the
formation of large stationary structures on the scale of a
eukaryotic cell within 10 min. The steady state of this
active phase separation (� phase separation from self-
organization) is characterized by nonzero fluxes.

Model I is based on attractive interactions of GMC
proteins with acidic lipids in membranes [18]. In this
mechanism [Fig. 1(a)] proteins (area fraction cm) are asso-
ciated with a lipid membrane, consisting of type 1 (area
fraction cl) and type 2 (area fraction 1� cl) lipids of
identical size. The size ratio between proteins and lipids
is N. Proteins interact attractively with type 1 lipids.
Proteins and lipids are allowed to diffuse in the plane of
the membrane. The number of bound proteins and the
average membrane composition are conserved quantities.
We write the free energy of the protein covered membrane
similar to Ref. [8] as
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FIG. 1 (color online). Schematic depiction of models I (a) and
II (b). (a) The membrane consists of a mixture of type 1 (black)
and 2 (white) lipids with adsorbed proteins. (b) Proteins undergo
a cycle of phosphorylation and dephosphoylation as explained in
the text.
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where dA denotes integration over the membrane surface,
Na denotes the number of lipids per unit area, and

fl � cl lncl � �1� cl� ln�1� cl� �
cm
N

lncm

�
1� cm
N

ln�1� cm� � uclcm: (2)

The local part of the free energy (2) consists of the entropic
contributions of the lipid (first and second term), the pro-
tein phase (third and fourth term), and the interaction
energy between lipids and proteins (last term) [19]. For
simplicity we assume that electrostatic repulsion and non-
electrostatic attraction in the lipid and protein phase cancel
locally. This is somewhat arbitrary, but does not change the
nature of the results as long as demixing is governed by
lipid-protein interactions. The nonlocal part of the free
energy (1) is governed by the interfacial energy in the lipid
phase, which is a small quantity. For the parameter � we
set � � 1

2ull
2 from Cahn-Hilliard Theory [20] where ul

and l are the typical interaction energy (on the order of
several kBT) and length (on the order of a lipid headgroup
size, i.e., l � 1–2 nm), respectively. Evolution equations
for cl and cm are obtained using linear nonequilibrium
thermodynamics and the mass balance equations to give

@tcl � �r � ~jl with ~jl � �Mlr
�F
�cl

;

@tcm � �r � ~jm with ~jm � �Mmr
�F
�cm

:

(3)

More specifically, the fluxes ~jl and ~jm are given by

~j l � �Dl�rcl � cl�1� cl��urcm � �r
3cl�	; (4)
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~j m � �Dm�rcm � Ncm�1� cm�urcl	; (5)

where Dl � MlkBTNa and Dm � MmkBTNa.
Model II is based on a biochemical cycle of GMC

phosphorylation and dephosphorylation, called myristoyl-
electrostatic switch [21]. In contrast to model I, we will
assume that all different lipid species are distributed uni-
formly in the membrane. In this phase separation model
[Fig. 1(b)] a protein can associate reversibly with the
membrane following a mass action law. On the membrane
proteins are irreversibly phosphorylated by a protein kin-
ase, which disrupts membrane binding immediately and
translocates the protein into the cytosol where it is dephos-
phorylated by a phosphatase. We can cast these processes
into a three-variable reaction-diffusion model of the fol-
lowing form

@tcm � kad�1� cm�cc � kdecm � kki�1� cm�
cm

km � cm
�Dmr

2cm; (6)

@tcc � kdecm � kad�1� cm�cc � kphcp �Dcr
2cc; (7)

@tcp � kki�1� cm�
cm

km � cm
� kphcp �Dcr

2cp: (8)

cm, cc, and cp denote the concentrations of membrane
bound, cytosolic unphosphorylated, and cytosolic phos-
phorylated proteins, respectively. kad and kde denote the
rate constants of membrane association and dissociation of
the unphosphorylated protein and kki and kph denote the
enzymatic activities of the kinase and phosphatase. For the
kinase activity we have used a Michaelis-Menten type
kinetics [22], whereas we have neglected this property
for the phosphatase, assuming that the concentration of
phosphorylated proteins is well below the respective
Michaelis-Menten constant [23]. Based on the properties
of protein kinase C we assume that the kinase needs lipids
for full activation [24,25] and that membrane bound pro-
teins decrease the available membrane space and thus the
kinase activity [6]. Equations (6)–(8) constitute a nonequi-
librium system, since the kinase activity is sustained and
consumes adenosine triphosphate (ATP) which is produced
by the metabolism. The total protein concentration ct �
1
V

R
dV�cm � cp � cc� is conserved.

The parameters for both models have been taken from
experiments. First we consider the linear stability of the
uniform steady states (Fig. 2). In both models we can
identify a region of linear instability, characterized by
real positive eigenvalues. Using the Maxwell construction
and tie-lines we calculated for model I the equilibrium
state for a given uniform state and identified a metastable
region, where a stable uniform state coexists with a stable
demixed state. The demixed state is characterized by a
phase with a high concentration in protein and lipid 1
and a phase with a low concentration in protein and lipid 1.
Using continuation methods we computed stationary solu-
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FIG. 2 (color online). (a) Phase diagrams with tie lines for the
phase separation in model I and (b) phase diagram for the active
phase separation in model II. Parameters in (a) are N � 25 and
u � 1:0 and in (b) are N � 25, Dm � 0:04 �m2 s�1 [30,31],
Dc � 20 �m2 s�1, kad � 1 s�1 [32], kde � 0:005 s�1 [32],
km � 0:01 [22], kph � 0:2 s�1 [21].
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FIG. 3. Dispersion relations for models I (a) and II (b) for the
uniform solution. Shown is only the largest (real) eigenvalue.
Parameters in (a) are N � 25, cl � 0:2, cm � 0:5, u � 1:01,
Dl � 1:0 �m2 s�1 [33], Dm � 0:04 �m2 s�1, � � 10�6 �m2

and in (b) ct � 0:5, kki � 0:05 s�1. Remaining parameters are
as in Fig. 2(b).
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FIG. 4. Snapshots of two-dimensional numerical simulations
of models I (a) and II (b) with periodic boundary conditions.
Shown is the concentration of membrane bound protein cm.
Parameters in (a) and (b) are as in Figs. 3(a) and 3(b), respec-
tively.
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tions for model II. Fixing the wavelength to 120 �m
(comparable to the size of a eukaryotic cell) one can also
identify regions, where a linearly stable uniform solution
coexists with a linearly stable stationary periodic solution.

Figures 3(a) and 3(b) show the largest eigenvalues for
both models from the linearly unstable regions in Figs. 2(a)
and 2(b). The instabilities belong to the type IIs class [26],
which is characterized by a real critical eigenvalue with
wave number zero and can be attributed to the conservation
relations in both models. Although both models have in-
stabilities of the same type they develop on very different
length and time scales. The wavelength of the fastest
growing mode �m in model I is linked to the molecular
interaction length. In our example in Fig. 3(a) it is on the
scale of 50 nm with a growth rate of 10 s�1. In contrast, �m
of model II is determined by kinetic rate and diffusion
constants and is of the order of 10 �m. In the example in
Fig. 3(b) the corresponding growth rate is 0:01 s�1.

The results of the linear stability have been confirmed by
numerical simulations in two dimensions with periodic
boundary conditions. Simulations were started from the
uniform steady state with small amplitude perturbations.
Figures 4(a) and 4(b) show exemplary two simulations for
models I and II with parameter values from the linearly
19810
unstable regions in Fig. 2. In both models stationary struc-
tures, which are not stable but display a coarsening behav-
ior for later stages, develop. For model I we have found the
scaling law �k�t� � at�� (Fig. 5) with an exponent � � 1=4
consistent with a modified Lifshitz-Slyosov-Wagner theory
[27] for concentration dependent mobility coefficients.
Since we are considering the two-dimensional case one
should rather expect a growth law �k��� � a��� with a
modified time scale � � t= ln�4t� [28]. However, on the
time scale of our numerical experiments both growth laws
yielded similar exponents. Although the initial growth is
very fast the initially observed wave numbers are small. To
obtain structures on the scale of the cell coarsening has to
occur over several orders of magnitude with � � 1=4,
which is a slow process. The possible scaling behavior of
model II is irrelevant for practical purposes since the
initially developed structures are already on a scale com-
parable to the system size and the first or second coarsen-
ing step will lead to polarized cells with a single domain of
high concentration of membrane bound proteins. One can
1-3
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FIG. 5 (color online). Late stage behavior of model I (t
 �
tDl=�; k
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). Shown are loglog-plots of the evolution of
the mean wave number of the structure factor of the membrane
bound protein concentration with time (a) or a modified time (b)
as described in the text. The exponent � of the power law was
obtained by a least square fit. Parameters are the same as in
Fig. 3(a).
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easily see in Fig. 4(b) that large structures have appeared
after ten minutes and within 1 h coarsening is complete.

In this Letter we have introduced and analyzed two
alternative models for pattern formation of GMC proteins.
GMC proteins are on the one hand found to form domains
by virtue of their attractive electrostatic interaction with
acidic lipids from self-assembly. On the other hand, they
can exploit an ATP-driven phosphorylation-dephosphory-
lation cycle (myristoyl-electrostatic switch) for their self-
organization. The striking difference between both mecha-
nisms lies in the relevant time and length scales. The
spinodal length scale of the phase separation in model I
is closely linked to the molecular interaction length in the
lipid phase. For fluid membranes under physiological con-
ditions the relevant interaction scale is comparable to the
size of a lipid molecule ( � 1 nm). The initial structure
formation is fast with growth rates of the order of 10 s�1,
but the coarsening process follows a scaling law. Thus
coarsening does not lead to structures on the size of the
cell in a biologically relevant time. The reaction-diffusion
mechanism (model II) leads initially to large structures,
which are on the scale of a eukaryotic cell. A rough
estimate for the length scale is given by the quantity�������
D�
p

, where D � 10 �m2 s�1 is the typical intracellular
diffusion constant of a protein and � � 10 s is a typical
time for a biochemical reaction. This yields a length scale
of� 10 �m. A combination of both mechanism leads to a
more complicated model that displays oscillatory dynam-
ics and traveling domains [29]. Here, we have used specific
physical and chemical properties of GMC proteins, but the
typical scales for molecular interaction energies and ranges
as well as for reaction rates and diffusion constants will be
comparable for other processes near membranes. We pro-
pose that both mechanisms are relevant for different as-
pects of structuring membranes: protein-lipid interactions
are suitable for rapid structuring of membranes on a sub-
micrometer scale, whereas reaction and diffusion of pro-
teins produce a structure on the scale of the size of a typical
19810
eukaryotic cell within minutes and are potentially useful
for polarizing a whole cell into two main compartments
(e.g., front and back).
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