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Jamming as a Critical Phenomenon: A Field Theory of Zero-Temperature Grain Packings
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A field theory of frictionless grain packings in two dimensions is shown to exhibit a zero-temperature
critical point at a nonzero value of the packing fraction. The zero-temperature constraint of force balance
plays a crucial role in determining the nature of the transition. Two order parameters, (z), the deviation of
the average number of contacts from the isostatic value, and (¢), the average magnitude of the force per
contact, characterize the transition from the jammed (high packing fraction) to the unjammed (low
packing fraction state). The critical point has a mixed character with the order parameters showing a jump
discontinuity but with fluctuations of the contact force diverging. At the critical point, the distribution of ¢
shows the characteristic plateau observed in static granular piles. The theory makes falsifiable predictions

about the spatial fluctuations of the contact forces.
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Introduction.—In a remarkably diverse range of sys-
tems, the transition from a flowing, liquid state to a
jammed, solid state is heralded by a dramatic slowing
down of relaxations [1]. Does an equilibrium critical point
underlie this glassy dynamics? The debate surrounding this
question has been spurred by the absence of any obvious
static signature accompanying the rapid increase of time
scales [1]. Purely dynamical scenarios have been proposed
[2] to explain time-scale divergences with no accompany-
ing static divergences. For thermal systems, a different per-
spective has been offered within the framework of an
avoided critical point [3] and a scaling theory based on
the existence of a zero-temperature critical point [4]. In a
more recent development, it has been suggested that the
mechanism of jamming in both thermal and athermal
systems is controlled by a zero-temperature critical point
(J point) [5].

Experiments on weakly sheared granular media indicate
that at a critical packing fraction there is a transition which
is accompanied by slow dynamics, vanishing of mean
stress, increasing stress fluctuations, and a change in the
distribution of contact forces [6,7]. Simulations indicate a
critical point occurring at zero temperature and a packing
fraction close to the random close packing value [5]. At
this critical point the grain packing is isostatic, having
reached the special coordination where all contact forces
are completely determined by the packing geometry [1]. A
theory based on this observation predicts a diverging length
scale associated with the mechanical stability of the net-
work [8]. In a different theoretical approach, an analogy
has been drawn between the jamming transition and k-core
percolation [9].

Collective properties of granular packings.—Granular
matter is made up of macroscopic objects for which ther-
mal fluctuations are unimportant. Many different packings
of grains can, however, be compatible with a given macro-
scopic parameter such as the packing fraction and the
proper statistical description of such nonthermal assem-
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blies has been discussed extensively in the literature [1]. A
widely used prescription is the microcanonical postulate
leading to the Edwards ensemble [10]. The principle of
maximum entropy [11] generates the usual rules of equi-
librium (thermal) statistical mechanics without appealing
to any physical principles. The canonical Boltzmann dis-
tribution can, for example, be obtained by maximizing the
entropy subject to the constraint of a given, measured,
average energy [12]. This approach to statistical mechanics
is not restricted to systems in thermal equilibrium and we
adopt it to define the statistical weight of grain packings.

The statistical ensemble of grains is constrained by the
requirements of mechanical equilibrium. In two dimen-
sions, the force-balance constraint can be rigorously en-
forced through the mapping of the contact forces to a
height field [13] defined on the voids surrounded by grains
(cf. Fig. 1). Expressing the microscopic stress tensor in
terms of these height fields, we construct a coarse-grained
formalism for describing the long-wavelength properties of
grain packings.

A=(0,0)

B = (-1,0)
R NP ~=~ |C=(1/2,4/312)
D = (-3/2,/32)

FIG. 1. Top panel: heights (A, i,) on voids surrounding a
grain of an ordered hexagonal packing with F = 1. The vectors
denote contact forces. Bottom panel: corresponding height con-
tours.
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The statistical field theory based on the height mapping
embodies a competition between the compressive effect of
increasing packing fractions and an entropic preference for
flat height configurations [14] which correspond to force
networks that are fragmented at all scales. As shown in this
work, this competition leads to the existence of a critical
packing fraction separating a disordered phase from an
“ordered” one characterized by two order parameters:
(i) the magnitude of the force per contact, (¢), and
(ii) (z), the deviation of the contact number per grain
from its isostatic value. At the critical point, the fluctua-
tions around {¢) diverge.

Construction of field theory.—The algorithm of maxi-
mum entropy [11,12] specifies that the probability P[{r;}]
of occurrence of a configuration with grain positions
{r;} be determined by maximizing the entropy, S[P]=
—> 4 Pl{r;}]InP[{r;}] subject to appropriate constraints.
For N grains in a volume V, interacting via short-range
repulsive potentials, the constraint is that of fixed aver-
age “pressure” [15]: 3y PLirHprd) = Sy Plir] X

iri 3 |r,~j = (p) (U is the interaction potential) and the
resulting distribution is:

Pl{rj}] = (1/Z) explap({r;})]. )

The partition function, Z(«a) = ZIP[{r,-}], is the generating
{r

function of all statistical averages. The Lagrange multiplier

a plays the role of inverse temperature: a = —9S/9{p)

and the prime on the summation restricts it to grain con-

figurations satisfying the equations of mechanical equilib-

rium for frictionless packings in d dimensions:

= )

r
dN equations : ZF ; jﬁ
- r;;
J 1

(2)N/2 equations : F;; = f(r;)). 3)

Here (z) is the average number of contacts per grain, F;; is
the magnitude of the contact force between grains i and j,
and f(r;;) specifies the force law. At the isostatic point,
(z) = zjso = 2d, the number of equations in Eq. (2) is
exactly equal to the number of unknowns [16,17] and,
therefore, the forces are uniquely determined. For (z) >
Ziso» EQs. (2) and (3) are coupled with a strength € which
depends on the compressivity of the grains: [17]:

_(F) JdF i\~
E_<rij><dri;> ' @

For hard spheres, € = 0, the two equations are decoupled
and the only packings for which {F;;} and {r;;} can be
determined are the isostatic ones [16]. For € < 1, small
variations in positions can lead to significant force
changes. In this weak-coupling limit, the partition function
can be calculated by summing over all the solutions, {F; j},
to Eq. (2) for a given set {r;} and imposing a Gaussian
constraint:

(@) pi) —€/2> (pi—p))?
e Z e Z . 5)

Z(a) = Z

{r}{F ij}

Here p; = > iry; f(r;;) is the pressure on grain i calculated
from {r;} and p = 3" ;r;;F;; is calculated from {F;}.

Height map.—The sum over F; is only over the force
configurations which satisfy force balance and, therefore,
can be mapped to the height field. The mapping rule is that
the height field gets incremented by the contact force
crossed while traveling around a grain in a counterclock-
wise direction: F;; = h; — h, = —F}; where j' and i’ are
the voids bracketing the contact ij [13] (cf. Fig. 1). Since
> ;¥ij = 0, the mapping of forces to heights is one to one,
up to an arbitrary choice of a single height. The coarse
graining of these height fields has been discussed in detail
in Ref. [13]. For frictionless grains, F;; I r;;, and upon
coarse graining the heights over a mesoscopic region
with a length scale much larger than the grain radius but
smaller than a typical length scale over which the height
fields vary [13], this constraint translates to V - h = 0 [18].
The divergenceless height field can be expressed in terms
of a scalar potential ¢: h, = d,¢; h, = —d,¢. It has been
shown in Ref. [13] that the microscopic stress tensor,
coarse grained over a mesoscopic region of area A, around
the point r: 6°(r) = (1/A)Y jca Sy rjF i is:

50— [ ke dyhy 7 _ Ry =00,
_axhx - xhy _axay¢ a)zc'wb '

where the second equality is special to frictionless grains.
Since the coarse-grained pressure is p°(r) = Tré =
V2y(r), the partition function, Eq. (5), can be written in
terms of the unconstrained field i.

Coarse graining the heights leads to a weight Q[¢]
which counts the number of microscopic {F;;} configura-
tions giving rise to the same ¢ field. Arguments similar to
the ones employed in height maps of loop models [14]
lead to Q[i]~ e /2 [rITREHVIE) _ ,=(/2) [d'r(V2uy
since flat interfaces have many equal height contours and
the forces within the regions bounded by these contours
can be independently rearranged without affecting force
balance. The forces in the ordered configuration of Fig. 1,
with completely tilted interfaces (in &, and ), cannot be
rearranged locally.

At the isostatic point, z = z;,, there is a unique solution
to Eq. (2) and p = V?¢. Expanding the pressure around
this point:

A
p() = V2 + (2-zi00) 5o
< Ziso
. V2 V2
:v‘//+(Z_Ziso)Z4—:ZZA . (6)

The second set of equations follow by noting that the extra
pressure, i—’z’lziso, due to the introduction of an additional
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contact at the isostatic point, is y As the mapping from
F;j — i, the mapping from r; to the coarse-grained pres-
sure, p(r), leads to a weight w[ p] ~ exp[—K|(V p)|?]. This
follows from the observation that, entropically, it is favor-
able to have the grains occupy as much of the volume as
possible, leading to small spatial variations of the packing
density and p(r).
With these weights, the partition function is:

7 = Z Q[ylwlpKe® fd"rp(r)}{e*(E/Z)fd"r[p(r)*p"(r)]z}
{2y}
= e HlY.7]
{2y}

1
H— g[zmqv ~ acdy + 2-g)0

+vhy

e K
{5 - E(ql +q3) (g + q4)}
q1,92,93,94

X [Z%Z‘lz ¢‘I3 ¢Q4 6‘11*‘12*‘13*‘14]' (7

Here, ¢ = V¢ is the pressure per contact [cf. Eq. (6)],
and the field z has been redefined to z — z;, which is
restricted to the set of integers. The parameters «, €, and
K have been scaled to absorb resulting factors of z;,.

Critical point.—The Hamiltonian H reflects the compe-
tition between Q] favoring ¢ = 0 and the “field” «
favoring nonzero ¢. It provides a model for studying the
response functions of grain packings with small but finite
€. We assume that the integer restriction on z can be
ignored [19] as long as € # 0.

In investigating whether or not there is a finite-a phase
transition involving the vanishing of one or more order
parameters, the fields in the Hamiltonian in Eq. (7) are ex-
panded around their average values; ¢4 = <q§q> + {q:2q=
<Zq> + nq with H = H0(<¢q>’ <Zq>) + Hl (<¢q>’ <Zq>; gqr nq)
The order parameters (¢,) and (z,) are obtained by min-
imizing the effective potential (a Landau-Ginzburg type
free energy functional), I'(¢,), (z,)) = Ho((¢,). (z,) —
In( [ I1,dZ,I1qdnge™ ") [20]. The simplest nontrivial ap-
proximation, is obtained by calculating the fluctuations,
(1£41*) and (|m4]%), at the loop level, replacing all 4-point
averages by 2-point averages [20], and assuming spatially
uniform order parameters: (¢) = (¢ o), (z) = (z4=0). To
leading order in €:

(&7 =1+ €@ — 1)) + K(2)*°

(mgl)" = (e + Kg?) ) ®)
Minimizing '), (z)) gives:
() — alze + () + XY + =0
(@) o
1
5<<¢>2 + W><Z> — a{) =0,

and the solutions near o, = 2/zj, are:

(¢) = (a/a )l + (1 — a./a)?]

(2) = (a/e)1 — a./a)/2. (10)

For @ = a,, there is an ordered phase characterized by two
order parameters. For a < a,, I'({¢), (z)) ceases to have
any local minima or maxima (cf. Fig. 2) and (¢) jumps
discontinuosly to O: the physical limit of its allowed values.
From Egs. (8) and (10), as « — «,, ¢ — 1,and the ¢ = 0
force fluctuations diverge: {(¢2) — ($p)* ~ W ~(1-
a./a)” /2. This type of transition is indicative of the end
of a line of metastable equilibrium similar to spinodal
critical points. Unlike spinodals, however, the transition
is accompanied by the disappearance of any local mini-
mum: a phenomenon observed in models with rigid con-
straints such as certain dimer models [21].

Structure factor and correlation length.—Since the criti-
cal point is marked by an instability in ¢ = V24, it is
necessary to include the next higher order derivative term,
|V ¢|?, and the fluctuations [cf. Eq. (8)] acquire new terms
proportional to g2. The structure factor of the magnitude of
the contact forces (the ¢ field), S(|q|) = (|§q|2>, describes
the spatial fluctuations:

S(g) = (1¢,1?
1
T 1Y+ (e + K2 + Kyq?
é:Z

T 1+ (@)t KPET + Ky € (b

where K, is the coefficient of the [V|? term, and the
correlation length & = 1_1}4@”2 which diverges as (1 —

a./a)~/*. The appearance of the diverging length scales
and the specific form of S(g) are predictions of the theory
that should be testable in experiments and simulations. A
correlation length exponent of 1/4 has been discussed in
theories and simulations of the J point [5,8,9].

<>

FIG. 2. The distribution P({¢)) of contact forces (from right to
left) « — @, = 0.7, 0.5, and 0.025. The inset shows the (z) = 0
cut of the potential, I'({¢), (z)), at different @ with a — a, from
bottom to top.
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Distribution of contact forces.—Experiments [6,7] and
simulations [5,17] have shown that changes in the force
distribution P(F) are associated with transitions involving
the vanishing of stress. In the field theory, ¢ corresponds to
F, modulo a microscopic length scale [18] and the distri-
bution (configuration to configuration variation) of (F), the
spatial average of the force (magnitude) is P((F)) =
P({®)). The latter is determined by the free energy func-
tional T': P((¢)) = e T« In the critical regime
where  (z((¢))) =0, T((¢)) = (1/2)(¢)* — aziso{¢) +
In({¢)). The In({¢)) term results from integrating out the
z field and embodies the physical effect of large contact
number fluctuations for small contact forces. As seen in
Fig. 2, the peak in P({¢)) gives away to a plateau as o —
a.. The plateau signals diverging force fluctuations and
vanishing shear modulus ~1/({¢?) — (¢)?). The distribu-
tion of (¢) does not exhibit the exponential tail character-
istic of the distribution of the individual forces. This
feature reflects a stress redistribution at the particle level
and disappears upon any spatial averaging [6,22]. The
diverging width of P({(F¥)) was inferred in the simulations
[5] through an observed lack of self-averaging.

Conclusions.—We have demonstrated the existence of a
zero-temperature critical point separating a jammed phase
with finite yield stress from an unjammed phase. The
critical point is characterized by a diverging correlation
length associated with force fluctuations and marked
changes in the shape of the force distribution. In experi-
ments where the grain packing is under a fixed loading, the
system will generically be in a two-phase coexistence
regime since the force (or pressure) is the order parameter
of the transition. In these situations, identifying the critical
point will require a better understanding of the nature of
the phase coexistence.

The force-balance constraint is violated by any form of
driving and the stability of the critical point to weak driving
needs to be analyzed to determine the dynamical behavior
of grain packings. If the critical point is stable then glassy
dynamics follows from general scaling arguments [4,23].
The extension of the theory to frictional packings is within
reach since the loop-force formalism exists [13]. Although
the similarities between two and three dimensions, ob-
served in simulations, suggest that an extension to higher
dimensions is possible, this remains an open question.
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